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1 Introduction

1.1 What Is an FFT?

This paper is intended for the engineer who wants$@md and implement an FFT or to
understand an existing implementation. It helps if you already knoat a FFT is.
However, it is not essential. This paper is about how to computéBmbt how to use
it, and the computations are laid out in detail.

FFT stands for Fast Fourier Transform. It is an algorithmp&rforming a DFT. DFT

stands for Discrete Fourier Transform. The DFT is a matheahaiperation. You will

find a definition for it in section 2.1.4. If you are unfamiliar with T, you are proba-
bly a software engineer who has been asked to implement or maatae FFT code for
some signal processing applications. In that case, you cantheidyathematics in this
paper to understand the FFT structure or read any of the numerousabdokeb pages
about the FFT, what it does, and how it is used.

Strictly, the FFT is a specific algorithm for performingtf@+Ts on vectors whose
lengths are powers of two. “FFT” is also usedésadibe other algorithms for performing
DFTs on vectors of other lengths. This paper addresses only vegtirsi¢hat are pow-
ers of two. The basic algorithm used in this paper is described in section 2.3.

1.2 What Are We Going To Do?

This paper shows you how to design and implement ageglormance FFT, particu-
larly on a computer processor with AltiVec technology. Higinfformance means execut-
ing an FFT not just in M(log n) time but organizing the work for efficient execution so
that an FFT can be performed in wedidss time. The design illustrated in this docu-
ment, if implemented well, can perform an FFT on a 1€24nent vetor in less than
9,400 CPU cycles on a Motorola PowerPC CPU 7400.

Section 2 analyzes the mathematical structure of the DFT, slmowET procedure, and
proves the FFT procedure computes the DFT. The emafics is developed explicitly.
The advantage of this, aside from knowing our algorithm is correct, is that it makss i
ier for us to reason about the algorithm. The effect is that déwsions later on—How
do we generate the weights?—are easier because we caravgiitgple formula that
shows what must be calculated. Also, this assists in demonstiaintpe FFT algorithm
is largely composed of simple parts, albeit connected in some complicated ways.

Section 3 converts the algorithm into simple C code and then shows hearganize
the code for efficient execution. This method of showing how the codevédoged is
repeated in this paper for two reasons:

* Showing the development provides a better understanding of the deamn th
showing a cmpleted work, particularly since some parts of the completges
are intricate.
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» Laying out the decisions separately makes them easier to doarmjleer circum-
stances, such as a different target architecture.

Section 4 shows incremental design improvements and methods to implement them.
Section 5 discusses generating constants needed by the FFT routines.
Section 6 reorganizes the basic FFT loops for more efficient execution.

Section 7 shows how to design an FFT for efficient permce on long vectors that do
not fit completely in cache memory at one time.

Section 8 adds support for the reverse DFT.
Section 9 completes the FFT, showing code to call the subroutines of earl@rssect

1.3 Target Architecture

The overall design described in this paper is suitable for implat@mton a variety of
computer architectures, because features like simplifying stodeture, reducing mem-
ory use, and eliminating unneeded calculations are generally behe&gardless of
computer architecture. At certain points, choices will be madsfgally for the family
of PowerPC processors (from IBM and Motorola) using AltiVec tedglfrom Mo-
torola).

AltiVec technology has several features of interestriplementing a higiperformance
FFT.

The floatingpoint instructions include a fused multiphgld operation that executes in the
same time as a multiply or add operation. It is thereforerddgaous to structure calcu-
lations to minimize multiphadd operations rather than merely minimizing multiply op-
erations.

The architecture provides singlestruction multipledata (SIMD) instructions that per-
form the same calculation on four sets of floajmgnt numbers at the same time. E.g.,
the calculation expressed by this C code:

for (= 0; i < 4, ++i)
d[i] = a[i] * b[i] + c[il;

can be computed by the single instructiom&ddfp d, a, b, ¢ ", provided that the ar-
ray contents are in processor registers namegdc, andd.

Along with this multipledata capability come:

» the ability to load and store data to and from memory in blocks and

2 2.1, August 8, 2004



Construction of a High-Performance FFT

» the restriction that memory access should be done on addresses \oijte 16
alignment for best performance.

These features affect our design decisions by giving us imeetotigroup data in blocks
of four floatingpoint numbers.

1.4 Target Processor
In section 7, particular characteristics of the Motorola PB@eCPU 7400 will be used

to illustrate design choices and construct the FFT. Relevant information about this CPU i
in section 7.1.1.

The reader is expected to be familiar with cache operatiook,as touches, streams, in-
validates, and flushes.

1.5 Introductory Notes

1.5.1 Source Code Notation and Mathematical Notatio n

References to C and assembly language source code are mvdatkadixedwidth font,
as in the assemblgnguage instructiommaddfp or the C expressiork<N- n[p] .

The usual mathematical notation is used extety in section 2 and sporadically
throughout this paper. At times it is necessary to mix thesendations, to refer to the
mathematical value that a certain software entity hascdtalenote mathematical vari-
ables, such as, and distinguish them from software entities, such as

1.5.2 Complex Number Representation

The representations of complex numbers and arrays of complex nuanearst made
explicit in much of this paper. Many of design features andraitliscussed are not sen-
sitive to the choice of representations.

Common arrangements for arrays of complex numbers are:

» Have two arrays. One holds the real components of the complex nureitse
other holds the imaginary components. This is called split or separated data.

* Have one array in which each element is a structure contaimmfidatingpoint
numbers, one the real component and the other the imaginary componens This i
called inteleaved data.

In demonstration source code, the real or imaginary componentmpfesonumbers are
sometimes referred to in ways that, due to C semantics, suggedain representation.

E.g., areference tafelk] " impliesv is a structure containing a memleer(and likely
another membeim) that is an array of floatingoint numbers, thus suggesting separated
data. Conversely,vikl.re " implies an array of structures, thus suggesting interleaved

data. The reader should understand that usually either arrangsnamtepable, with
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suitable changes in the source code, and | may switch back anddwaréeib them to use
the representation that is simpler in whatever feature is being discussed.

In discussing the data being transformed, the term “elememit’sréd an entire complex
element, either as a whole or as essentially parallel togpeseon its real and imaginary
components. When the individual components are relevant, the real and nyagima
ponents are referred to explicitly.

1.5.3 Miscellaneous

“Low bit” and “low bits” refer to the least significant bits of a value. “Rligit” and “high
bits” refer to the most significant bits of a value. The valngslved are typically bit
fields smaller than whole processor registersronigectural words, so the most or least
significant bits involved are those of the value and not necessarily of the wdrale

1.5.4 Bit-Reversal Permutation

It is well known that the FFT produces results in a permuted ,cadesrder called a bit
reversal permutation. This is defined formally in sections 2.1.5 and 2.Bitrduction

here may also be useful. An armycontaining 2 elements is said to be the-bitversal
permutation of an arragalso containing "2elements if:

For eachk andk’ such that thél-bit binary notation fok (including lead-
ing zeroes) is the bliy-bit reversal of theN-bit binary notation fork’,
a, =a,.

That is, each elemeasg is found ina' by reversing the bits in the ind&x
Note two properties of the hieversal:

* The bitreversal of a number is symmetric; the-fieversal of the biteversal is
the original number. The same is true of the entire petrant the bitreversal
permutation of a biteversal permutation is the identity permutation.

* The bitreversal depends dw For example, the bieversal of 11 considered as a
4-bit number (1013 is 13 (1103). The bitreversal of 11 considered as #i6
number (001013) is 52 (110109).

2 Mathematical Composition of an FFT

2.1 Definitions

2.1.1 Domains

The domain for variables used as indices is the set of nonnegdéygers. This includes
the variableg, jo, j1, K, ko, k1, ko, m, n, N, p, andqg. That domain should be und&od in
the theorems below. Other variables are drawn from the set gfl@omumbers or are
explicitly described.
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The square root ofl is denoted with and not with.

Indices begin at zero. A vector with 8lements has indicéssatisfying0 < k <2V

2.1.2 Notation
Bold font indicates a vectoa:

A subscript indicates an element of a vecsor:

Brackets indicate construction of actar: [j2]0Sj<4 is a vector containing the elements 0,
1,4, and 9.

If a has, for example,"2elements, thea is identical tofa, ]0sj<2m :

2.1.3 Roots of 1

For convenience, we defirid to be é™'*. Note thatl™ is one of they™ roots of 1. Spe-
cifically, it is thep™ such root in the counterclockwisei-lirection from the real axis.
Thus,1%*=1,1"=i, 1= -1, and1¥'= .

1% is cyclic with period 1, since, Kis an integer]*=¢* ™' *™=g? tikg2 tix=q g2 mix=1x

17 is the complex conjugate af, written 1.

2.1.4 Discrete Fourier Transform (DFT)
The DFT of a D-element vectoh is the vectoH:
k
H, = 212” h, for0<k <2".
o<j<2N
Ko

This is identical to the conventional definition that ugds for the coefficient rather

k.
than1?" .

2.1.5 Bit-Reversal Function, r(k)
Given an integek, let [b] be the string of bits (0 or 1) such that= 3 b, 2' . Thus p] is

the bnary numeral fok. The sum may be taken over all integer®nly finitely many
bits will be nonzero, so the sum effectively has a finite number of terms alkhtongts
oni are not explicitly written.

Define r(k)= LTANE

A description ofr is:
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r(k) is the number obtained by writing the binary digitk af reverse or-
der after a “.”. E.g.t(12) =r(110G) = .001% = 3/16.

The wayr maps integers to fractions is convenient in the FFT, partigudarcer is in-
dependent of the length of the vector being transformed. Welsollnaultiplyr (k) by 2"
to produce an integer result:

Lemma(1): If k<2, 2"r(K) is the number obtained by writihgas anm-bit number in
binary, including leading 0s, and reversing the digits (that is, exoang
thei™ digit with them-i-1™ digit).

Proof: 2(k) is 2"yb2""=yh2™™. By substitutingm-i-1 for i, we obtain

Z bm—i—l 2i

Corollary(2): If k< 2", then Z'r(K) is an integer.

Lemma(3): If ky < 2", thenr(2™ky + kq) = r(ky)+r(2™ko).

Proof: Let po;] and |o;;] be binary numerals fok, andk;, respectively, and note that
[boj.m] is the binary numeral for"Ry. The binary numeral for"Rq+k; is [boj.mtbi;] be-

causeby;.mtby; is always a binary digity;.m andb,; are never both 1b(; is 1 only for
somei less thamm, andby;.n, is 1 only for some not less tham.) Then:

r(2mk, +k,)= Z(o.m+b1)2'
> by m2'+Zbl 2
=12k, )+ 1(

Lemma(4): 2"r(2"k) =r(K).

Proof: If [by] is the binary numeral fok, [bi.] is the binary numeral for"X. Then
2" (2") is 2"y b_, 27" =3y b_ 2™ Substitutingn+i for i gives Y b 27, which is

r(K).

2.2 1* with (k)
Lemma(5): If ky < 2", then 12520 = 17(k)

Proof:

12"‘m(2"‘k0+k1) - 12mm(k1)+2mm(2mko), by Lemma(3).
= 12mm(2m"°), sincel” is cyclic and Zr(ky) is an integer by Corollarg2).
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=1"0) by Lemma4).

2.3 Introduction to the FFT Procedure
Let v be a sequence of vectors, so thas thei™ vector inv andviy is thek" element in
the i"™ vector inv. Each vector will be of lengthN2 so the element indek satisfies
O<k<2".

Letvp = h, whereh is a vector we are interested in computing the DFT of.

We definevni for 0<n< N by dividingk by 2" and using the quotieti and the re-
mainderk;:
Definition: Vv, =V =y Y

n, 2Nk, +k, 02N j+k,
o<j<2"

The last vector of this sequeneg, is the bitreversal permutation ¢, the DFT ofh, as
H is defined in section 2.1.4. To see this, consider an elemegnt-ollowing the defini-

tion of v, we divide the element inddeby 2¥™ to get the quotierk and the emainder
0, which gives:

_ i2"r(k) i2"r (k)
Ve = UMy 0= T1 2 v = §1 7 h=H,

o< j<2N o<j<2N o< j<2N

Thus,vy is H indexed with a biteversal function (refer to Lemn{a) about 2r(Kk)).

The last vectoryy, is the result we want, and the intermediate vectors forouta for
getting there. Any vector in the sequence can be computed from anpysexector in
the sequence. To see this, we will show how elementg.gfcan be computed from"2
elements ofv,, for 0Sn<n+m< N. To do this, we need to take an indexto the
vector and decompose it into three pakis ki, andk,, such thak = 2%k, + 2"k, + ko

and0<k, <2", 0<k <2", and0<k, <2 ™. Given that, we will show below that:

Equation(6): d, = Zlilm("l)wilah,
0<jp<2™

— r(zmko) — —
wherew =1 d dk1 - Vn+m,2N’"|<0+2N’"’m|<1+k2 , and q;, = Vn,zN’”|<0+2N’”’m ik,

Equation (6) is the classic btiterfly operation of the FFT:

* Afew elements of an alreagypmputed vectov, are extracted to form a vectar
which has 2 elements.
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« The elements o& are multiplied by certain coefficieritso form a new vector
[w]laj1]05j1<2m .

* The DFT of[w"a; ],

« The elements ad become elements in a new veotRi,.

Is computed to give a new vecthr

2" is called the radix of the butterfly.

An advantage of this formulation is that the coefficients and #maesits ofv,.,, andv,
are explicitly identified. Some formulations of the FFT show that FFT can be per-
formed using btterfly operations in this form but leave out details or include tbham
as part of a completdgorithm from which it is difficult to identify individual butterfly
operations.

2.4 Proof of the FFT Procedure

Now we prove the claim. First, writeas 2" ks + 2¥™™k; + k, using theko, ki, andk, de-
scribed above. Observe that dividikgpy 2*™™ gives a quotient™o+k; and a remain-
derk,. So by definitionynmg Is:

— jm(zmk0+k1)
vn+m‘2N-n-m(2ka+kl)+kz i _Ez . 1 Von-nm i, -
<)<

Divide j by 2"to get a quotierjt and a remaindgi. Then:

A L 0<2" foTj;<2" 1(2’“ jo+jl)m(zmko+k1)V0’2N-n—m(2m o+ Jrko
= DN 1l io+jl)m(kao+k1)V0’2N,n,m(2m .
= PPN 1l j0+i1)m(2mk0+k1)V0’2N,n o )
= DIDS 1j1m(2mk0+k1)12m Jom(2m |<0+|<1)VO‘2N_n )
= z 118"k +io) Z 12" ioB2"ko k),

- . 0,2Nn j0+(2N—n—m j1+k2)'
0<j,<2™ 0<jo<2"

So far, we have used standard algebraic derivations. The nexisgeproperties af
and1*. By Lemma(5), 12"0C"6 k) = 1) That gives us:

Equation(7): v Z 1170 i) z 1 JoB(ko)y,

y y 02N" io+(2N_n_m j1+k2).
O<j<2™ 0<jo<2"

n+m,2N-"m (2'“ k0+k1)*k2 =

! These coefficients are commonly called “twiddldswill call them weights.
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ConsidervnyzN,nk0+(2N,n,mj1+k2). To use the definition of,, divide 2", + (2"}, + ko) by

2¥" to get quotienk, and remainder (2", + ky), and then the defition gives:

v — Z 1jm(k0)v

n2N-n k0+(2N—nfm jl+k2) o 0,2N-" j+(2an—m jl+k2) .
<]<

Changg to o in that equation and substitute it into Equaiiénto get:

_ B (2" kg +ky)
Vn+mv2N7n7m(2mko+k1)+kz - - o Vn,2'\"”k0+(2'\"”’m j1+kz)'

0<j;<2™
By Lemma(3), r(2"ko + ki) = r(ky)+r(2"ko), so:

o 1j1m(k1)1j1m(2mko)v

Vn+m'2an—m(2m k0+k1)+k2 - nyszn k0+2an7m jp+k,

0<j,<2™

3 s ey

0<j,<2™

n,2N-n k0+2anfm ik, |

This is readily seen to be equivalent to Equaf®n We have proven that Equati¢d)
can be used to compute each vegfdirom previous vectors, so a sequence of such com-
putations will compute the DFT of

2.5 Conclusions
The key statements from the above sections are:

Vok = hy,

=y 1ilm(k1)(r(2mko))‘lv , and

Vn+m,2N'“k0+2""”"“k1+k2 n,2N "k +2NTTM ) +k,
0<j,<2"

This suffices to show the FFT takesnOdg n) time (heren is the number of elements)
and how to implement it simply (by choosing mnconstructing a general butterfly im-
plementation, and iterating through the value®,df, andky). For a highperformance
FFT, it is just our starting point.
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3 Initial Design

3.1 Starting the FFT Kernel

3.1.1 Implement C Code From the Mathematics

The conclusions above show how to implement an FFT that executes ing®yj time.

To paform an FFT on a vector of'Zlements, first

decide what valuemfo use in each

step from some, to somev,:m. E.g., for a vector of 2elements, we might use's of 3,
2, 2, and 2 to go fromg to v to vs to v7 to vg. For each of thesés aftervy, calculate:

= 1j1m(k1) r(2mk0) b
Vn+m N+ 2N T vk, z Vn 2N +2N M 4k, !
) 0 1 K2 ' 0 JitKe

0<j<2™

using the corresponding valuesrodndm.

To be formal, letry, m, m,...., mp; be a sequence of positive integers that suh et
whereng = 0 andny:1=n, + m,. Thennpe=N, and the following set of calculations is suffi-

cient to perform an FFT on a vector of length 2

g
2

0<j,<2™

— 1B (k,) r(zmp K )
) o — 1]1 1 @ 0 vV
D Mok, >

is H
N—np—mp . |:| )

npsz_np ko+2 j1tky EB

whereB represents the variables bounds andis:p< P, 0<k, <2™, 0<k, <2™,

and0<k, < 2"™™™™ _ Although this &pression is tedious, we can translate it directly into

C code:

FFT Directly From Mathematics

for(p =0;p <P ;)
for (kO = 0; kO < 1<<n[p] ; ++k0)
for (k1 = 0; k1 < 1<<mlp] ; ++k1)
for (k2 = 0; k2 < 1<<N -n[p] - m[p]; ++k2)
{
complex sum =0,
for j1 = 0; j1 < 1<<m]p]; ++j1)

v [n[p]] [(1<<N

v [n[p+1]] [(1<<N - N[p])*k0 + (1<<N

sum += one(j1*r(k1)) * one(j1*r((1<<m[p])*k0)) *
- n[p])*k0 + (1<<N

-n[p] - mp])*j1 + k2];
-n[p] - m[pD)*k1 + k2] = sum,;

whereone(x) andr(k)

are functions to computg andr(k). (The exponentiation bjy

has been written as a multiplication in the exponet)of

3.1.2 Group Butterfly Calculations Together

The C code specifies an execution order, but the mathematicabsiprés a set of op-
erations. They may be performed in any order, subject to theahabnstraint that each

10
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elementv,x must be calculated before it is used. We will rearrahgectlculations to
benefit computing speed. (In fact, | chd3d¢o stand for “pass,” reflecting that the FFT
can be performed iR se@rate passes over the data, exactly as in the loops above. We
will not stay with this, Ehough | will sometimes refer to calculations in a certain,pass
such as the first pass, the last pass, or someppddese refer to logical positions in the
calculation and not necessarily chronological positions in the execution sequence.)

First, note that for given values pf ko, andk2, the calculations for different values of
k1 use the same elementsvfip]] . (k1 does not appear in the subscriptfigp]] .)
Because of this, it is efficient to group these calculationsttiegesince that allows all
the inputs to be read once and used repeatedly. Binaedk2 are independent of each
other, we may freely swap the order of their loops:

for(p =0;p <P ;+HHp)

for (kO = 0; kO < 1<<n[p] ; ++k0)

for (k2 = 0; k2 < 1<<N -n[p] - m[p]; ++k2)
for (k1 = 0; k1 < 1<<m]p] ; ++k1)

3.1.3 Create a Butterfly Subroutine
Define a subroutine:

FFT_Buitterflies
static void FFT_Butterflies(

int m, // Butterfly radix.
ComplexArray vOut, /I Address of output vector.
ComplexArray vin, /I Address of input vector.
int kO, /I kO from equation.
int cO /I Coefficient for kO.
)
{
/I Coefficient for k1 is coefficient for kO divided by 1<<m.
constintcl = c0 >>m;
intj1, k1, k2;

for (k2 =0; k2 <cl ; ++k2)
for (k1 = 0; k1 < 1<<m; ++k1)
{

complex sum=0.;

for j1 = 0; j1 < 1<<m; ++j1)

sum += one(j1*r(k1)) * one(j1*r((1<<m)*k0)) *
vin[cO*kO + c1*j1 + k2];

vOut[cO*kO + c1*kl + k2] = sum;

}

}

By using this subroutine, our FFT code becomes:
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First FFT Kernel
for(p =0;p <P ;++p)
for (kO = 0; kO < 1<<n[p]; ++k0)
FFT_Butterflies(m[p], v[n[p+1]], v[n[p]], kO, 1<<N - n[p]);

We will call this the FFT kernel. It will change and grae/we improve the implementa-
tion.

The code above fa#FT_Butterflie s does not show all the inpuis[co*ko + c1*j1

+ k2] being read prior to the loop ¢a, but that will be a feature of the butterfly rou-
tines we construct later. For now, we will state thattuie is added to the
FFT_Butterflies routine without showing it. A second benefit of the feature is that b
reading all input elements before writing any outpemelnt, the routine may be used
“in-place,” that is, with the same memory usedvfor andvout .

3.2 Structuring the FFT

3.2.1 General

12

We must choose the valuesraf. These are largely influenced by our target processor
architecture. To begin, | require thét be at least 4, so that some reductions can be made
later, in section 3.3.5. FFTs for fewer than 18 €4) elements can be implemented
seprately.

In most passes, a raddx butterfly n is 2) is attractive, as it is efficient and a high
performancemplementation is feasible. A higierformance general rad&butterfly is
difficult or impossible to implement (see below). Converselyadix2 butterfly is easy
but inefficient. So for most passes, we will use ratibutteflies.

What would be required to implement a general r&dbutterfly? A general radi® but-
terfly has 16 input numbers (real and imaginary components of @agipplex numbers),

14 numbers for weights, and one additional constdﬁt/@). Those numbers occupy 31
processor registers. (The AltiVec registers hold four fl@gpioint numbers each, but we
wish to use the parallelism of the processor and perform fdtertes at once. Each
number needed by one butterfly will occupy one of the four spacesegister, and the
parallel numbers of other butterflies will occupy others.) Thed?B® CPU 7400, like
all existing AltiVec processors, executes instructions in alipgeTo obtain high per-
formance, multiple instructions must be executed simultaneously,camdiltiple calcu-
lations must be in progress at one time. With 31 registers @ctapd 32 total, only one
register is left to work with.

It is possible to start some calculations of the ré&dbutterfly without having all the in-
put data, and it is possible to perform calculations at less thdegheossible speed. A
radix-8 butterfly is more efficient than a raddxbutterfly in that two passes of a radix
butterfly yield the same mathematical results as threeepadgsa radixd butterfly but re-
quire the data to be read and written only two times insteaded. thris conceivable that

an FFT structured with radi& passes could compete for performance with an FFT struc-
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tured with radix4 passes. | have not fully explored this possibility and do not consider
further in this paper.

3.2.2 First Pass

Although we will usem=2 for most passes, we will consider the firstmy, separately
because of a significant difference in the butterfly calculationthe intial pass | is

zero). Wherp is zero,n, is zero. Rcall the bounds ok are 0< k, <2™, so, wherp is

zero, we haved <k, < 1sokp is zero and only zero. Then the weight used; 1'(2m"°),

is 1. Since multiplying by 1 is a waste of time, a specialebily implementation that
omits the multiplications by the weight will be faster thageaeral implementation that
multiplies by the weight, while still getting nect results in this case.

When the multiplications by the weight are not needed, the numipeoadssor registers
required by an implementation of the butterfly calculations is redwsirde registers are
not needed to hold the values associated with the weight. In tleishigkperformance
radix-4, radix8, and radixl6 butterfly implementations are all feasible. Generally, a
higherradix buttefly is preferred, for two reasons. One, a good FFT composed of higher
radix butterflies uses no more, and perhaps fewer, calculationsrtHafTacomposed of
lower-radix butterflies. Two, with highemradix butterflies, fewer passes are needed, and
so the number of times data must be read from and written to memory (or sdoeri

Because we are using butterflies with2 (radix4) for all passes after the first, we need
at least two buttdly implementations for the first pass, one with an ewvesind one with

an oddm. Them's must sum td\, which can be even or odd. Thus, we must use the
radix-8 butterfly for oddN, and we may use either the rador radix16 butterfly for
evenN. The radix16 butterfly provides a slight germance advantage over the radix
butterfly, but the cost of implementing it might not be worth tighslain. | will use the
radix-4 butterfly in this paper. The changes required to support at&dmutterfly in the
initial pass are small. (Among other changes, the minimum wélNewill need to be in-
creased from 410 5.)

3.2.3 Summary

This then gives us an FFT structure. For eMemise a radbd butterfly on the first pass
and all remaining passes. For ddduse a radp8 butterfly on the first pass and a radix
butterfly on all remaining passes.

3.3 Preparing the Kernel

3.3.1 Separate the First Pass
The FFT kernel is:

for(p =0;p <P JHHp)
for (kO = 0; kO < 1<<n[p]; ++k0)
FFT_Butterflies(m[p], v[n[p+1]], v[n[p]], kO, 1<<N - n[p));

2.1, August 8, 2004 13



Construction of a High-Performance FFT

To use a special butterfly routine for the first pass, we shepdrate that iteration from
the rest of the loop. That gives:

for(p =0;p <1 JHHp)
for (kO = 0; kO < 1<<n[p]; ++k0)
FFT_Butterflies(m[p], v[n[p+1]], v[n[p]], kO, 1<<N - n[p));

for(p =1;p <P ;+HHp)
for (kO = 0; kO < 1<<n[p]; ++k0)
FFT_Butterflies(m[p], v[n[p+1]], v[n[p]], kO, 1<<N - n[p));

Some simplifications are now possible. The first loopdpis a single iteration, and so is
the second (oRr0) sincen[p] is 0. Instances a0 andn[p] in these loops may be re-
placed with 0. In the second set of loopf] is always 2, so it will beeplaced. Then
we have:

p=0;
FFT_Butterflies(m[p], v[n[p+1]], v[n[p]], 0, 1<<N);

for(p =1;p <P ;++p)
for (kO = 0; kO < 1<<n[p]; ++k0)
FFT_Butterflies(2, v[n[p+1]], v[n[p]], kO, 1<<N - n[p]);

3.3.2 Eliminate Fictitious Mathematical Vectors

As stated earlier, the butterfly routines can be written t&kwoplace. So we are not re-
quired to have separate memory #1p]] andv[n[p+1]] . Instead, we can pass the
same memory lation for the butterfly input and output vectors. Before the butterfly, the
memory will contain elements ofnp. After the butterfly, the memory will contain ele-

+1

ments ofvnp . We will use two arrays, nameth for the original input @ay andvout

for the final output array. On the first pass, data is read ¥tenand writen tovout . On
subsequent passes, data is both read from and writt@uttpso all subsequent calcula-
tions are performed in place. Note that may be the same arrayamut or may be dif-
ferent. The new code is:

p=0;
FFT_Butterflies(m[p], vOut, vin, 0, 1<<N);

for(p =1;p <P ;++p)
for (kO = 0; kO < 1<<n[p]; ++k0)
FFT_Butterflies(2, vOut, vOut, k0, 1<<N - n[p]);

3.3.3 Specialize Values for the First Pass
We decided to use an initial radixbutterfly if N is odd and an initial rad# butterfly if
N is even, so the first call teFT_Butterflies with can be expanded with 3 or 2 substi-
tuted form[p] :

if (N & 1)
FFT_Butterflies(3, vOut, vin, 0, 1<<N);
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else
FFT_Butterflies(2, vOut, vin, 0, 1<<N);

for(p =1;p <P ;++p)
for (kO = 0; kO < 1<<n[p]; ++k0)
FFT_Butterflies(2, vOut, vOut, k0, 1<<N - n[p]);

3.3.4 Discuss the Last Two Passes

The last two passes (whens P-2 andP-1) are also special, partly for reasons to do with
the target conputer architecture. We classify passes after the first:

* general passep K P-2), in which there are many (more than four) iterations on
k2 for each iteration oko,

* the penultimate pasp € P-2), in which there are four iterations kn for each it-
eration orko, and

» the final passg = P-1), in which there is one iteration @ for each iteration on
kO.

The general passes have the feature that one weight is used Joiterations ork2, be-
cause the weight depends onlykonand not ork2. Thus, we will be able to load the val-
ues associated with a weight once each tionehanges and use them for many values of
k2.

In the penultimate pass, there are four iterationg2oper iteration orko. With AltiVec
instructions, one iteration of the butterfly instruction sequence will ¢aeuoutterflies

for four values ok2. Thus, the weight used will change in each iteration of the instruc
tion sequence. In this case, it is better to use code designddad tiee weight values
frequently.

In the final pass, there is one iterationkarper iteration omko. k2 is always zero, and the
codficient c1 in the FFT_Butterflies routine is 1. This means the input elements for
one butterfly are adjacent to each other in the array, as cs@ehdyy examining the sub-
scripts in the butterfly code. AltiVec instructions are not vgelited to data packed so
closely together, so a special routine is necessary. To aatglnatters further, we will
want to do additional poessing in the final pass.

3.3.5 Separate the Last Two Passes

The details of designing specialized routines to calculate Higseiri the last two passes
will be examined in sections 4.3.4 and 4.3.5. For now, we want to preparatiké ke
separéng those passes:

if (N & 1)

FFT_Butterflies(3, vOut, vin, 0, 1<<N);
else

FFT_Butterflies(2, vOut, vin, 0, 1<<N);

for(p =1;p <P -2 ++p)
for (kO = 0; kO < 1<<n[p]; ++k0)
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FFT_Butterflies(2, vOut, vOut, k0, 1<<N - n[p]);
for( ;p <P -1 ++p)
for (kO = 0; kO < 1<<n[p]; ++k0)

FFT_Butterflies(2, vOut, vOut, k0, 1<<N - n[p]);

for( ;p <P ;++p)
for (kO = 0; kO < 1<<n[p]; ++k0)
FFT_Butterflies(2, vOut, vOut, k0, 1<<N - n[p]);

As before, some simplifications become available. The values<of n[p] are known
constants in the final two sets of loops, wherie P-2 andP-1. n,=N, n,1+m,.1=n,, and
Mp1=2, Sonp.1=N-2. Similarly,n, >=N-4. Thusi<<N-n[p] is 16 and 4 in the final two sets
of loops. The values aifp] are not constants but are known toNbe andN-2. Making
these substitutions gives:

for( ;p <P “1 ;++p)
for (k0 = 0; kO < 1<<N - 4; ++k0)
FFT_Butterflies(2, vOut, vOut, k0, 16);

for( ;p <P ;++p)
for (kO = 0; kO < 1<<N - 2; ++k0)
FFT_Butterflies(2, vOut, vOut, k0, 4);

The loop for (; p < P; ++p) " can becomeif (p < P) " because there is at most
one iteration (since is at leastP-1 after the previous set of loops). This discards one
execution of 4+p”, but there is no subsequent code that yses the increment is super-
fluous. Further, if weequire thatP be at least 2, the condition is necessarily true, so the
test may be omitted. Requirifgbe 2 mplies we have at leasty andmy, each of which

will be at least 2, stl is at least 4. Our kernel now works only for vectors of at l[E@st
elements. (If a radixL6 butterfly is used in the first pass in lieu of a radlizutterfly, the
radix-8 butterfly lecomes the smaller possibility in the first pass. Timgis at least 3, so

N is at least 5, and there must be at least 32 elements.)

The kernel is now:

if (N & 1)

FFT_Butterflies(3, vOut, vin, 0, 1<<N);
else

FFT_Butterflies(2, vOut, vin, 0, 1<<N);

for(p =1;p <P -2 [ +4p)
for (kO = 0; kO < 1<<n[p]; ++k0)
FFT_Butterflies(2, vOut, vOut, k0, 1<<N - n[p]);

for( ;p <P -1 +4p)
for (kO = 0; kO < 1<<N - 4; ++k0)
FFT_Butterflies(2, vOut, vOut, k0, 16);

for (kO = 0; kO < 1<<N - 2; ++k0)
FFT_Butterflies(2, vOut, vOut, k0, 4);
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As we saw in the last set of loops, the& {; p <P -1; ++p) " in the penultimate set
can be changed taf{p <P  -1)", and the++p is again superfluous and may be dis-
carded:

Expanded FFT Kernel
if (N&1)

FFT_Butterflies(3, vOut, vin, 0, 1<<N);
else

FFT_Butterflies(2, vOut, vin, 0, 1<<N);

for(p =1;p <P -2 ++p)
for (kO = 0; kO < 1<<n[p]; ++k0)
FFT_Butterflies(2, vOut, vOut, k0, 1<<N - n[p]);

if(p<P -1)
for (k0 = 0; kO < 1<<N - 4; ++k0)
FFT_Butterflies(2, vOut, vOut, kO, 16);

for (k0 = 0; kO < 1<<N - 2; ++k0)
FFT_Butterflies(2, vOut, vOut, k0, 4);

3.3.6 Use Butterfly Specializations

Now that the special cases have been separated in the kerngkevaelvantage of them
by using specializations of the butterfly routine customized fgin performance in each
case.

The initial radix8 and radix4 butterflies will be performed by routines that are essen-

tially FFT_Butterflies specialized ton=2 or n=3 and k0=0. These are named
FFT8_OWeights (described in section 4.3.3) arrkT4_0weights (described in section
4.3.2).

The general radid butterflies will be performed by a routine specialized#@ and

vin =vout . Rather than require this routine to calculat&|ji*r((1<<m)*k0)) , we will
pass it precalculated values to use. AsuBsed in section 3.3.4, only one weight is used
per value of k0, so only one weight is passed. This routine is named
FFT4_1WeightPerCall ~ (described in section 4.3.1). In section 4.2, Scdss what the
contents of the weights array should be.

In the penultimate pass, the loop kanin FFT_Butterflies is executed only four times

in C code, only once when implemented as AltiVec instructions. Atséme time,
FFT_Butterflies is called many times, since the upper bounckamns larger than in
previous passes. To reduce the overhead of routine calls, we oséna that incorpo-
rates the loop omo. In addition, the routine will be designed to efficiently load the
weights, one per instruction equence iteration. This routine is named
FFT4_1WeightPerlteration (described in section 4.3.4). Instead of being passed a sin-
gle value ofko, it is passed the upper boundkon and, instead of being passed a single
weight, it is passed the array of weights.
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The final pass similarly incorporates the loopkonn its butterfly routine. This routine is
namedrFT4_Final (described in section 4.3.5). Using these new routines, our kernel be-
comes:

FFT Kernel Using Specialized Butterfly Routines
if (N&1)

FFT8_0Weights(vOut, vin, 1<<N);
else

FFT4_0Weights(vOut, vin, 1<<N);

for(p =1;p <P -2 ++p)
for (kO = 0; kO < 1<<n[p]; ++k0)

FFT4_1WeightPerCall(vOut, kO, 1<<N - n[p], weights[kO]);
if(p<P -1)

FFT4_1WeightPerlteration(vOut, 1<<N - 4, weights);

FFT4_Final(vOut, 1<<N - 2, weights);

4 Designing Butterfly Routines

The bulk of a higkperformance FFT implementation is the butterfly routines. The
FFT_Butterflies subroutine given in section 3.1.3 is quite general and does not provide
high performance. We must implement the routines described in section 3.3.6.

These routines incorporate improvements including:

* Read each input element before writing any output to the samemnéaation,
so the routine can be used-fiace.”

* Load weights from a table instead of calculating them.

» Compute butterflies of specific radices with specialized code.

* Incorporate a loop iterating aa.

* Omit multiplications by a weight when the weight is 1.

* Incorporate other desired processing, including rearranging data inrgnem

As mentioned, a butterfly routine can read of its input elementsebefiting any otput
element. This is a straightforward modification and will notlbmonstrated for the gen-
eral butterfly routine. It will be a feature of all of the specific hogitformance vaations
we write.

4.1 Prepared Constants

4.1.1 Internal Weights Are Built into Routine

The FFT_Butterflies routine contains two expressions that refesni andr . The first

of these isone(j1*r(k1)) . This depends solely gn andk1, each of which is between
0 andm. Thus, the expressiame(j1*r(k1)) takes on a fixed set of values that is de-
termined bym. When writing a butterfly variation for a specific valuengfthose values
can be incorporated into the routine.
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For example, in a radi# butterfly fnis 2), one(j1*r(k1)) takes on the values 11, i,
and-i at various times. Rather than compore(j1*r(k1)) , the routine simply multi-
plies by 1-1,i, or-i at the appropriate points.

In a radix8 butterfly, we also see the values/2 /2+i/2 /2. With the constant/2 /2
prepared at the time the source code is compiled or assembled, no calculatiehed at
run-time for the véues ofone(j1*r(k1))

4.1.2 External Weights Are Stored in An Array

The second expressiondse(j1*r((1<<m)*k0)) . The values of this expression depend
on ko, so they differ from iteration to iteration in a loop kin Still, we wish to avoid
computing them when the FFT is performed. A simple arrangementaculate all the

values( r(zm"f’))'1 takes on and store them in an array, say an array nasights . The

value of( r(zm“ﬂ))jl could be inveights[ko][i1]

However, we will see in sgon 4.2 that these values are not all used directly in & high
performance implementation of a radixbutterfly. Instead, for each value lef we use

six floatingpoint numbers derived from the valué.é(zm""))h for 0g1<4. These six val-
ues will be stored in some structure in the array elemagtits[ko]

Calculating the values and storing them in an array saves no @mpuime when per-
forming a single FFT. There is a savings when numerous FFigatars of the same
length are pdormed, as these weight calculations need be performed only oncetoprior
performing the first FFT. Reading the values from memoiiwsually be much faster
than calculating them. Hence there is a great advantage to storing the values

Note that the value om is assumed inveights . A specific preparation of the array
weights  provides values only for butterflies of a specific radix. To provideesfor
multiple radices, multiple arrays or mecemplicated eangements would be needed.

4.1.3 Common Weights

The elements okeights are independent of the length of thetee being transformed.
The number of elements we need from the array depends on the letigghvettor Ko
reaches higher values for longer vectors), but the contents otkshnt are the same.
For example, every FFT for whicko reaches the value 7 uses the same value in
weights[7][1] . Thus, one array of weights (for a specific radisthaged in this way
may be easily shared by FFTs of every length.

4.2 General Radix -4 Butterfly Alg orithm

4.2.1 Goedecker’s Algorithm

The general radid butterfly, with an input vecta, an output vectad, and some weight
w, is Equation6) with m=2:
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d, = Y1 Meia,
1

Implementations of this calculation that minimize the number dtiplications have
been known for some time, but the AltiVec architecture, like mahgrst features a
fused multiplyadd operation. Using this operation, S. Goedecker gives us-a 22
instruction sequence for calculating the radivutterfly?> Goedecker’s algorithm re-
quires that we prepare the weights in a different form. In pd&tlee six real and imagi-
nary components a@b ', »?, andw>, we use six Vaies calculated from them:

wlr= Re@).
wli= Im(w)/Re@).
w2r= Re@?).

w2i=  Im(w?)/Re@?).
w3r= Re@®)/Re().
w3i=  Im(e’)/Re@?).

When we wish to perform a radik butterfly, we retrieve those six prepared values and
read the four complex numbers @into processor registers namaa , aoi , alr, ali ,

a2r, a2i , a3r, anda3i , whose names indicate the real and imaginary components of the
elements o& in the natural way. Then Goedecker’s algorithm is:

Goedecker’s Algorithm
blr= - ali*wli+ alr.
bli =+ alr * wili + ali.
b2r= - a2i*w2i+ a2r.
b2i = + a2r * w2i + a2i.
b3r= - a3i*w3i+ a3r.
b3i =+ a3r * w3i + a3i.
cOr =+ b2r * w2r + aOr.
cOi = + b2i * w2r + a0i.
c2r= - b2r*w2r + a0r.
c2i= - b2i*w2r+ a0i
clr =+ b3r*w3r + bir.
cli =+ b3i *w3r + bli.
c3r= - b3r*wa3r + bilr.
c3i= - b3i*w3r+ bli.
dOr = + c1r * wir + cOr.
dOi = + cli * wir + cOi.

dir= - clr*wlr + cOr.
dli= - cli*wlr + cOi.
d2r= - c3i*wlr +c2r.

d2i =+ c3r * wir + c2i.
d3r =+ c3i *wilr + c2r.
d3i= - c3r*wlr+ c2i.

2S. Goedecker, “Fast Radix 2, 3, 4, and 5 Kerrel§ast Fourier Transformations on Computers wigier@pping
Multiply-Add Instructions,” SIAM Journal of Scientific Computing8, no. 6 (November 1997): 160511,
http://fepubs.siam.org/sam - bin/dbg/article/28194
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Upon completion of this sequena®y , doi , dir, dii , d2r, d2i , d3r, andd3i contain
the real and imaginary componentsdpfis may be verified by working through the alge-
bra. Note that each of the 22 lines corresponds to one AltiMedifp Or vnmsubfp in-
struction. (Except those instructions operate on four sets of dagaew have shown
only one.)

4.2.2 Division by Zero

The astute reader will have wondered what happens whes), RR¢(?), or Re@?) is
zero. The short answer is to never let them be zero. In pratii€durns out to be sim-
ple, an unintended side effect of finite floatipgint precision. Ref) is zero whenw isi
(or-i).  is1'¥"%), sq it isi whenr(2™) is ¥4. Therd” is, by definition, &' which is

€2 '. When preparing the weights, the real part of this is calculage@valuating
cos(n/2), which is ideally zero. However, a computer’s floating-point repesentation of
n/2 is imperfect, and a small-nonzero value results. This avoids division by zero, but it in-
troduces a small error into the FFT calculation. However, this emo different from
the many errors caused by rounding errors in all the othehtgemyhich are also calcu-
lated mprecisely. The FFT calculation is necessarily slightly imprecise.

4.3 Butterfly Routines

4.3.1 FFT4_1WeightPerCall

FFT4_1WeightPerCall  implementsFT_Butterflies with n=2 andvin =vout and with
weight values provided so that it need not calculate them.

If we make the first two modifications (replacingvith 2 andvin with vout ) directly to
FFT_Butterflies and change the arguments, we get:

static void FFT4_1WeightPerCall(
ComplexArray vOut, /I Address of output vector.
int kO, /I kO from equation.
int cO, /I Coefficient for kO.
CommonWeight weight /I Values for weight calculations.

/I Coefficient for k1 is coefficient for kO divided by 1<<m.
constint cl =c0 >> 2;
intj1, k1, k2;

for (k2 = 0; k2 < c1; ++k2)
for (k1 =0; k1 <4 ; ++k1)
{
complex sum=0.;
for j1 =0; j1 < 4; ++j1)
sum += one(j1*r(k1)) * one(j1*r(4*k0)) *
vOut[cO*k0 + c1*j1 + k2];
vOut[cO*kO + c1*k1 + k2] = sum;
}

}
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Now we will implement Goedecker’s algorithm. Essentially, ldaps onk1 andj1 are
replaced by Goedecker’s algorithm from section 4.2.1, including thessay reads of
input elements into symbok®r , a0i , alr, ali, a2r, a2i , a3r, anda3i and writes of

output from symbolsior , doi , dir, dli, d2r, d2i , d3r, anddsi .

If weight is set cor-

rectly, the code above and the code below calculate the same (eside from differ-

ences in floatingpoint rounding).

FFT4 1WeightPerCall

static void FFT4_1WeightPerCall(

constintcl =c0>> 2;

int k2;

float aOr, a0i, alr, ali, a2r, a2i, a3r, a3,
bir, bli, b2r, b2i, b3r, b3i,

for (k2 = 0; k2 < c1; ++k2)
{
a0r = vOut.re[cO*k0 + c1*0 + k2];
a0i = vOut.im[c0*k0 + c1*0 + k2];
alr = vOut.re[cO*k0 + c1*1 + k2];
ali = vOut.im[c0*k0 + c1*1 + k2];
a2r = vout.re[cO*k0 + c1*2 + k2];
a2i = vOut.im[c0*k0 + c1*2 + k2];
a3r = vOut.re[cO*k0 + c1*3 + k2];
a3i = vOut.im[c0*k0 + c1*3 + k2];
blr= - ali*weight.wli + alr;
bli =+ alr * weight.wli + ali;
b2r= - a2i* weight.w2i + azr;
b2i = + a2r * weight.w2i + a2i;
b3r= - a3i* weight.w3i + a3r;
b3i = + a3r * weight.w3i + a3i;
cOr = + b2r * weight.w2r + aOr;
cOi = + b2i * weight.w2r + a0i;
c2r= - b2r* weight.w2r + a0r;
c2i= - b2i*weight.w2r + a0i;
clr = + b3r * weight.w3r + blr;
cli = + b3i * weight.w3r + b1li;
c3r= - b3r*weight.w3r + blr;
c3i= - b3i*weight.w3r + bli;
dOr = + c1r * weight.wlr + cOr;
d0i = + cli * weight.wlr + cOi;

dir= - clr * weight.wlr + cOr;
dli= - cli*weight.wlr + cOi;
d2r= - c3i*weight.wlr + c2r;

d2i = + c3r * weight.wlr + c2i;
d3r = + c3i * weight.wlr + c2r;

22

ComplexArray vOut, /I Address of output vector.
int kO, /I kO from equation.
int cO, /I Coefficient for kO.
CommonWeight weight /I Values for weight calculations.
)
{

/I Coefficient for k1 is coefficient for kO divided

cOr, c0i, c1r, cli, c2r, c2i, c3r, c3i,
dOr, d0i, d1r, d1i, d2r, d2i, d3r, d3i;

by 1<<m.
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d3i= - c3r*weight.wlr + c2i;
vOut.re[cO*k0 + ¢1*0 + k2] = dOr;
vOut.im[cO*k0 + ¢1*0 + k2] = d0i;
vOut.re[cO*k0 + c1*1 + k2] = d1r;
vOut.im[cO*k0 + c1*1 + k2] = d1i;
vOut.re[cO*k0 + c1*2 + k2] = d2r;
vOut.im[cO*k0 + c1*2 + k2] = d2i;
vOut.re[cO*k0 + ¢1*3 + k2] = d3r;
vOut.im[cO*k0 + ¢1*3 + k2] = d3;;

4.3.2 FFT4_0Weig
FFT4_0Weights

a weightless
FFT4_1WeightPerCall

hts

ImplementsFT_Butterflies with n=2 andko=0. The calculations for
radbd butterfly are straightforward and can be derived from
by replacingwir, w2r, andw3r with 1 andwili, w2i, andwa3i

with 0 and simplifying the resulting code:

FFT4 0Weights

{
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static void FFT4_0Weights(

ComplexArray vOut, /I Address of output vector.
ComplexArray vin, /I Address of input vector.
int cO /I Coefficient for kO.

/I Coefficient for k1 is coefficient for kO divided
constintcl =c0>> 2;

int k2;

float aOr, a0i, alr, ali, a2r, a2i, a3r, a3,

for (k2 = 0; k2 < c1; ++k2)

by 1<<m.

cOr, c0i, c1r, cli, c2r, c2i, c3r, c3i,
dOr, dOi, d1r, d1i, d2r, d2i, d3r, d3i;

aor = vin.re[c1*0 + k2];
a0i = vin.im[c1*0 + k2];
alr = vin.re[c1*1 + k2];
ali = vin.im[c1*1 + k2];
a2r = vin.re[c1*2 + k2];
a2i = vin.im[c1*2 + k2];
a3r = vin.re[c1*3 + k2];
a3i = vin.im[c1*3 + k2];
cOr =+ a2r + alr;

c0i = + a2i + aoi;

c2r= - a2r+ a0r;
c2i= - a2i+ a0i;
clr =+ a3r + alr,

cli =+ a3i + ali;

c3r= - a3r+alr;
c3i= - a3i+alj
dOr = + c1r + cOr;

dOi = + cli + cOi;

dir= - clr+ cOr;
dli= - cli+ cOi;
d2r= - c3i+c2r;
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d2i =+ c3r + c2j;
d3r =+ c3i + c2r;
d3i= - c3r+c2i;

vOut.re[c1*0 + k2] = dOr;
vOut.im[c1*0 + k2] = dOi;
vOut.re[c1*1 + k2] = d1r ;
vOut.im[c1*1 + k2] = d1i;
vOut.re[c1*2 + k2] = d2r;
vOut.im[c1*2 + k2] = d2i;
vOut.re[c1*3 + k2] = d3r;
vOut.im[c1*3 + k2] = d3;;

}

4.3.3 FFT8_0Weights

FFT8_OWeights implementsFFT_Butterflies with nr=3 andko=0. It may be said that
the calculations for a weightless radxoutterfly are both complicated and straightfor-
ward, as they are very symmetric yet intricate:

FFT8 0Weights
static void FFT8_0Weights(

ComplexArray vOut, /I Address of output vector.
ComplexArray vin, /I Address of input vector.
int cO /I Coefficient for kO.

)

{

/I Prepare a constant, sqrt(2)/2.

const float sqrt2d2 = .7071067811865475244;

/I Coefficient for k1 is coefficient for kO divided by 1<<m.

constintcl =c0>> 3;

int k2;

float aOr, a0i, alr, ali, a2r, a2i, a3r, a3i,
adr, a4i, abr, abi, abr, abi, a7r, a7i,
bOr, b0i, blr, bli, b2r, b2i, b3r, b3i,
b4r, b4i, b5r, b5i, b6r, b6i, b7r, b7i,
cOr, c0i, c1r, cli, c2r, c2i, c3r, c3i,
c4r, cdi, c5r, ¢5i, cbr, cbi, c7r, c7i,
dOr, d0i, d1r, d1i, d2r, d2i, d3r, d3i,
d4r, d4i, d5r, d5i, d6r, d6i, d7r, d7i,
tor, t5i, t7r, t7i;

for (k2 = 0; k2 < c1; ++k2)

{
aor = vin.re[c1*0 + k2];
a0i = vin.im[c1*0 + k2];
alr = vin.re[c1*1 + k2];
ali = vin.im[c1*1 + k2];
a2r = vin.re[c1*2 + k2];
a2i = vin.im[c1*2 + k2];
a3r = vin.re[c1*3 + k2];
a3i = vin.im[c1*3 + k2];
adr = vin.re[c1*4 + k2];
adi = vin.im[c1*4 + k2];
abr = vin.re[c1*5 + k2];
abi = vin.im[c1*5 + k2];
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a6r = vin.re[c1*6 + k2];
a6i = vin.im[c1*6 + k2];
a7r = vin.re[c1*7 + k2];
a7i =vin.im[c1*7 + k2];
bOr = aOr + a4r;

b0i = a0i + a4i;

blr =alr + abr;

bli = ali + ab5i;

b2r = a2r + abr;

b2i = a2i + a6i;

b3r =a3r + arr;

b3i = a3i + a7j;

b4r = alr - adr;
b4i = a0i - adi;
b5r = alr - abr;
b5i = ali - abi;
b6r = a2r - aér;
b6i = a2i - abi;
b7r = a3r - arr;
b7i = a3i - af7i;
cOr = bOr + b2r;

c0i = b0i + b2i;
clr=blr + b3r;
cli=bli + b3j;

c2r = bOr - b2r;
c2i = bOi - b2j;
c3r = blr - b3r;
c3i = bli - b3i;
c4r = b4r - b6i;
c4i = b4i + bé6r;

c5r = bbr - b7i;
c5i = b5i + b7r;

c6r = b4r + b6i;

c6i = b4i - bb6r;
c7r = b5r + b7i;

C7i = b5i - b'r;
tor = cbr - c5i;
t5i = cbr + ¢5j;

t7r = c7r + c7i;
t7i=c7r - C7i;
dOr = cOr + clr;

dOi = cOi + c1j;

dlr = cOr - clr;
dli = cOi - cli;
d2r = c2r - c3i;
d2i = c2i + c3r;

d3r = c2r + c3i;

d3i = c2i - C3r;

d4r = + t5r * sqrt2d2 + c4r;
d4i = + t5i * sqrt2d2 + c4i;

d5r= - t5r* sqrt2d2 + c4r;
d5i= - t5i * sqrt2d2 + c4i;
dér= - t7r * sqrt2d2 + cér;

d6i = + t7i * sqrt2d2 + c6i;
d7r = + t7r * sqrt2d2 + cér;
d7i= - t7i*sqrt2d2 + c6i;
vOut.re[c1*0 + k2] = dOr;

/Tw=1.

/Tw=1.

1w =1

Tw=1.

w=i.

II'w =sqrt(2)/2 * (+1+i).

IT'w =sqrt(2)/2 * ( - 1+i).
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vOut.im[c1*0 + k2] = dOi ;
vOut.re[c1*1 + k2] = d1r;
vOut.im[c1*1 + k2] = d1i;
vOut.re[c1*2 + k2] = d2r;
vOut.im[c1*2 + k2] = d2i;
vOut.re[c1*3 + k2] = d3r;
vOut.im[c1*3 + k2] = d3;;
vOut.re[c1*4 + k2] = d4r;
vOut.im[c1*4 + k2] = d4i;
vOut.re[c1*5 + k2] = db5r;
vOut.im[c1*5 + k2] = d5i;
vOut.re[c1*6 + k2] = dér;
vOut.im[c1*6 + k2] = d6i;
vOut.re[c1*7 + k2] = d7r;
vOut.im[c1*7 + k2] = d7i;

}

For readers who wish to analyze the ra8liRutterfly code, it is structured as a sequence

of three radix2 passes. The comments show the value @fhere each iteration dk

begins.

Discussion of the derivation of the above code is beyond the scope papleisMaple
code that generates the assignment statements is given in appendix

4.3.4 FFT4_1WeightPerlteration
FFT_1WeightPerlteration

cdculate themEFT_1WeightPerlteration

implements a loop oRo calling FFT_Buitterflies with
nm=2,vin =Vout , andc1=4 and with an array of weight values provided so that it need not
compute the same results as:

for (k0 = 0; kO < 1<<N ~4; ++k0)
FFT_Butterflies(2, vOut, vOut, k0, 16);

Here is a simple implementation:

static void FFT4_1WeightPerlteration(
ComplexArray vOut,
int uo,
const CommonWeight weights]

int j1, kO, k1, k2;

for (kO = 0; kO < u0; ++k0)
for (k2 = 0; k2 < 4 ; ++k2)
for (k1 =0; k1 <4 ; ++k1)
{

complex sum=0.;

for j1 =0; j1 < 4; ++j1)

vOut[16*k0 + 4*j1 + k2];
vOut[16*k0 + 4*k1 + k2] = sum;

26

sum += one(j1*r(k1)) * one(j1*r(4*k0)) *

/I Address of output vector.
/I Upper bound on kO.
/I Array of weight values.
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}

Here is an implementation using Goedecker’s algorithm:

FFT4 1WeightPerlteration

static void FFT4_1WeightPerlteration(

ComplexArray vOut, /I Address of output vector.
int uo, /I Upper bound on kO.
const CommonWeight weights] /I Array of weight values.

)

{
int kO, k2;

float aOr, a0i, alr, ali, a2r, a2i, a3r, a3i,
bir, bli, b2r, b2i, b3r, b3,
cOr, c0i, c1r, cli, c2r, c2i, c3r, c3i,
dOr, dOi, d1r, d1i, d2r, d2i, d3r, d3i;

for (kO = 0; kO < u0; ++k0)

{
/I Load values for current weight.
CommonWeight weight = weights[k0];

for (k2 = 0; k2 < 4 ; ++k2)
{

a0r = vOut.re[16*k0 + 4*0 + k2];
a0i = vOut.im[16*k0 + 4*0 + k2];
alr = vOut.re[16*k0 + 4*1 + k2];
ali = vOut.im[16*k0 + 4*1 + Kk2];
a2r = vout.re[16*k0 + 4*2 + k2];
a2i = vOut.im[16*k0 + 4*2 + k2];
a3r = vOut.re[16*k0 + 4*3 + k2];
a3i = vOut.im[16*k0 + 4*3 + k2];
blr= - ali* weight.wli + alr;
bli =+ alr * weight.wli + ali;
b2r= - a2i*weight.w2i + a2r;
b2i = + a2r * weight.w2i + a2i;
b3r= - a3i* weight.w3i + a3r;
b3i = + a3r * weight.w3i + a3i;
cOr = + b2r * weight.w2r + aOr;
cOi = + b2i * weight.w2r + ao0i;
c2r= - b2r*weight.w2r + a0r;
c2i= - b2i*weight.w2r + a0i;
clr = + b3r * weight.w3r + blr;
cli =+ b3i * weight.w3r + b1li;
c3r= - b3r*weight.w3r + bilr;
c3i= - b3i*weight.w3r + bli;
dOr = + c1r * weight.wlr + cOr;
d0i = + cli * weight.wlr + cOi;

dir= - clr * weight.wlr + cOr;
dli= - cli*weight.wlr + cOi;
d2r= - c3i* weight.wlr + c2r;

d2i = + c3r * weight.wlr + c2i;
d3r = + c3i * weight.wlr + c2r;
d3i= - c3r*weight.wlr + c2i;
vOut.re[16*k0 + 4*0 + k2] = dOr;
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vOut.im[16*k0 + 4*0 + k2] = dOi;
vOut.re[16*k0 + 4*1 + k2] = d1r;
vOut.im[16*k0 + 4*1 + k2] = d1i;
vOut.re[16*k0 + 4*2 + k2] = d2r;
vOut.im[16*k0 + 4*2 + k2] = d2i;
vOut.re[16*k0 + 4*3 + k2] = d3r;
vOut.im[16*k0 + 4*3 + k2] = d3i;

Note that when this is implemented with AltiVec instructions,|tle@ onk2 will vanish,
as all four iterations of the loop are performed by a singlatiter of AltiVec instruc-
tions, as indicated by the naiET4_1WeightPerlteration

4.3.5 FFT4_Final

FFT_1Final implements a loop oko calling FFT_Butterflies with n=2, vin =Vout ,
andc1=1 and with an array of weight values provided so that it needaimilate them.
FFT_Final should compute the same results as:

for (k0 = 0; kO < 1<<N - 2; ++k0)
FFT_Butterflies(2, vOut, vOut, k0, 4);

Here is a simple implementation:

static void FFT4_Final(
ComplexArray vOut, /I Address of output vector.
int uo, /I Upper bound on kO.
const CommonWeight weights] /I Array of weight values.

intj1, kO, k1, k2;

for (kO = 0; kO < u0; ++k0)
for (k2 =0; k2 <1; ++k2)
for (k1 =0; k1 <4 ; ++k1)
{

complex sum =0,

for j1 = 0; j1 < 4; ++j1)

sum += one(j1*r(k1)) * one(j1*r(4*k0)) *
vOut[4*k0 + j1 + k2];
vOut[4*k0 + k1 + k2] = sum;

We can reduce this further sinceis always zero

static void FFT4_Final(

ComplexArray vOut, /I Address of output vector.
int uo, /I Upper bound on kO.
const CommonWeight weights] /I Array of weight values.

28 2.1, August 8, 2004



Construction of a High-Performance FFT

{
int j1, kO, k1;
for (kO = 0; kO < u0; ++k0)
for (k1 =0; k1 <4 ; ++k1)
{
complex sum=0,;
for j1 = 0; j1 < 4; ++j1)
sum += one(j1*r(k1)) * one(j1*r(4*k0)) *
vOut[4*k0 + j1];
vOut[4*k0 + k1] = sum;
}
}

Here is an implementation using Goedecker’s algorithm:

FFT4 Final

static void FFT4_Final(
ComplexArray vOut, / I Address of output vector.
int uo, /I Upper bound on kO.
const CommonWeight weights] /I Array of weight values.

)

{
int kO;

float aOr, a0i, alr, ali, a2r, a2i, a3r, a3,
bir, bli, b2r, b2i, b3r, b3,
cOr, c0i, c1r, cli, c2r, c2i, c3r, c3i,
dOr, dOi, d1r, d1i, d2r, d2i, d3r, d3i;

for (kO = 0; kO < u0; ++k0)

{
/I Load values for current weight.
CommonWeight weight = weights[k0];

a0r = vOut.re[4*k0 + 0];

a0i = vOut.im[4*k0 + Q];

alr = vOut.re[4*k0 + 1];

ali = vOut.im[4*k0 + 1];

a2r = vout.re[4*k0 + 2];

a2i = vOut.im[4*k0 + 2];

a3r = vOut.re[4*k0 + 3];

a3i = vOut.im[4*k0 + 3];

blr= - ali* weight.wli + alr;
bli =+ alr * weight.wli + ali;
b2r= - a2i*weight.w2i + a2r;
b2i = + a2r * weight.w2i + a2i;
b3r= - a3i* weight.w3i + a3r;
b3i = + a3r * weight.w3i + a3i;
cOr = + b2r * weight.w2r + aOr;
cOi = + b2i * weight.w2r + a0i;
c2r= - b2r* weight.w2r + a0r;
c2i= - b2i*weight.w2r + a0i;
clr = + b3r * weight.w3r + blr;
cli = + b3i * weight.w3r + b1li;
c3r= - b3r*weight.w3r + blr;
c3i= - b3i*weight.w3r + bli;
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dOr = + c1r * weight.wlr + cOr;
d0i = + cli * weight.wlr + cOi;

dir= - clr * weight.wlr + cOr;
dli= - cli*weight.wlr + cOi;
d2r= - c3i*weight.wlr + c2r;

d2i = + c3r * weight.wlr + c2i;
d3r = + c3i * weight.wlr + c2r;
d3i= - c3r*weight.wlr + c2i;
vOut.re[4*k0 + 0] = dOr;
vOut.im[4*k0 + 0] = dOi;
vOut.re[4*k0 + 1] = d1r;
vOut.im[4*k0 + 1] = d1i;
vOut.re[4*k0 + 2] = d2r;
vOut.im[4*k0 + 2] = d2j;
vOut.re[4*k0 + 3] = d3r;
vOut.im[4*k0 + 3] = d3i;
}

}

4.3.5.1 AltiVec Implementation

Readers familiar with the AltiVec architecture will appate that previous butterfly rou-
tines are nearly ideal for AltiVec implementati®®T4_Final presents some interesting
problems, though. Consider the symbats, alr, a2i , anda3i . The values for these
symbols are read from array elements with indic&s+0 , 4*k0+1 , 4*k0+2 , and4*k0+3 .
These elements are adjacent to each other, and AltiVec instsigiiovide no good way
to perform arithmetic on adjacent elements. Additional instructiars be used to move
the elements around within the preser registers.

This problem interacts fortuitously with another problem. The FFEH&s with its ele-
ments permuted from the desired order. That is, the FFT procexturasvy, which is
the bitreversal permutation dfi. After vy is computed, we would like to rearrange the
array elements into the desired order. This rearrangementegjigioes moving ements
within processor registers. As it happens, quite to our benefit, the szarrangnents
serve both to provide the desired order and to arrange the elements eothyéoi high
performance calculation.

However, this rearrangement changes the order in which we préessmes, with con-
sequences to the weight array. We could use the same weightaris used in other
routines, but the calculations of the memory addresses of the weigjHte more com-
plicated, and we will need to rearrange the weights withinptioeessor registers to
match the data. The FFT can be performed faster if the wedgbtprearranged as
needed.

This is discussed further in section 6.4.

5 Generating Weights

The butterfly routines need prepared weights. Here is code to generate them.
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5.1 Prerequisites
A simple constant is used:

TwoPi
| static const double TwoPi = 2 * 3.14159265358979323 84626433, |

The values needed to perform a butterfly with one weight can be stored in this structure

CommonWeight
typedef struct {

float wlr, wli, w2r, w2i, w3r, w3i;
} CommonWeight;

5.2 Subroutines

The weightgeneration routines need some subroutines. Here is a subroutine tatealcul
the ineger basdwo logarithm ofn, that is [Tbg, n[:

ilog2
static inline int ilog2(unsigned int n)

{

int c;
for (c =0; n >>=1; ++¢C)

return c;

}

With GCC and a PowerPC execution target, the same functiomeniayplemented more
efficiently with the routine below. Many processors have an instrudionlar to
cntlzw , which counts the number of leading zero bits in a word (of 32 bits).

static inline int ilog2(unsigned int n)

L
int c;
asm(" cntlzw %0, %1; subfic %0, %0, 31 "o "=r"(c): " o(n));
return c;

}

A method is needed to calculate-t@versals. The following routine calculates the bit
reversal of a 3bit number by reversing the bversals of its four eighiit bytes, which
are looked up in a table. The table is generated with the code in section B.4.

rw, Reverse Word

static unsigned int rw(unsigned int k)
{
static const unsigned char b[256] = {

0,128, 64,192, 32, 160, 96, 224, 16, 144, 80, 208, 48, 176, 112, 240,
8,136, 72, 200, 40, 168, 104, 232, 24, 152, 88, 216, 56, 184, 120, 248,
4,132, 68,196, 36, 164, 100, 228, 20, 148, 84,212, 52, 180, 116, 244,
12, 140, 76, 204, 44,172,108, 236, 28, 156, 92, 220, 60, 188, 124, 252,
2,130, 66,194, 34,162, 98, 226, 18, 146, 82,210, 50, 178, 114, 242,
10, 138, 74,202, 42,170, 106, 234, 26, 154, 90, 218, 58, 186, 122, 250,
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6, 134, 70, 198, 38, 166, 102, 230, 22, 150, 86, 214, 54,182, 118, 246,
14, 142, 78, 206, 46, 174, 110, 238, 30, 158, 94, 222, 62,190, 126, 254,
1,129, 65, 193, 33, 161, 97, 225, 17, 145, 81, 209, 49, 177, 113, 241,
9,137, 73,201, 41, 169, 105, 233, 25, 153, 89, 217, 57, 185, 121, 249,
5,133, 69, 197, 37, 165, 101, 229, 21, 149, 85, 213, 53, 181, 117, 245,
13, 141, 77, 205, 45, 173, 109, 237, 29, 157, 93, 221, 61, 189, 125, 253,
3,131, 67,195, 35, 163, 99, 227, 19, 147, 83, 211, 51, 179, 115, 243,
11, 139, 75, 203, 43,171, 107, 235, 27, 155, 91, 219, 59, 187, 123, 251,
7,135, 71,199, 39, 167, 103, 231, 23, 151, 87, 215, 55, 183, 119, 247,
15, 143, 79, 207, 47,175, 111, 239, 31, 159, 95, 223, 63, 191, 127, 255
h

unsigned char
b0 = bk >> 0*8 & Oxff],
bl = bk >> 1*8 & Oxff],
b2 = b[k >> 2*8 & 0xff],
b3 = b[k >> 3*8 & 0Oxff];
return b0 << 3*8 | bl << 2*8 | b2 << 1*8 | b3 << O* 8;

}

The functionr(k), which rotates bits around a “.”, can be computed fr@® , which
reverses bits in a 3ait field, by shifting the bits right 32 bits in floatingpint:

r, Calculate r(k)

static float r(unsigned int k)
{

return 1./4294967296. * rw(k);
}

5.3 Generate Common Weights

32

The routine below generates the array of common weights.

The numbers stored in each array element are the numbers nee@eedecker’s algo-

rithm, described in section 4.2.1. In each iteration the Weigmislr(zm"O), from

Equation(6) in section 2.3. Since we use=2, we havew = 1'(#) Thusr(4*k0) is used
in the code below to generate the numbers.

The caller of this routine passes the length of the veottwettransformed. This is the
number of elements in the vector to be transformed, not the numletnants in the
weight array.

This routine generates only/26 weights. In full, 3/4 weights are needed, as the upper
limit on ko in the final pass is"?4, as readily seen in the call #6T4_Final in section
3.3.6. Indeed, the loop condition below should k&< n/4 " to support the kernel as
written so far. However, in section 6.4, we will mod##yr4_Final in ways that preclude

it from using the common weights. It will get its own weightsg, and the common ar-
ray generated here will be used only by the other butteoflyines. In this case, the
greatest upper limit ok is 216, as seen in the call E6T4_1WeightPerlteration in
section 3.3.6.

Here is the routine. See comments below about the arguments.
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GenerateCommonWeights

static int GenerateCommonWeights(
CommonWeight **weights, /I Pointer to array address.
int *length, /I Pointer to supported length.
int NewLength /I New length to support (1<<N).

int kO;

/I Try to allocate space and check result.
CommonWeight *p = (CommonWeight *)
realloc(*weights, NewLength/16 * sizeof **weights);
if (p == NULL)
return 1;

for (kO = *length/16; kO < NewLength/16; ++k0)

const double x = TwoPi * r(4*k0);
p[k0].wlr = cos(x);
p[k0].wli = tan(x);
p[k0].w2r = cos(x+X);
p[k0].w2i = tan(x+x);
p[k0].w3r = 2. * p[kO].w2r -1;
p[k0].w3i = tan(3.*x);
}

/I Pass address and supported length back to caller
*weights = p;
*length = NewLength;

return O;

}

This routine could simply take a vector length as input and retuanray of weight val-
ues. However, to facilitate operations by the caller, it providesces to alter an exist-
ing array and to record the supported length. In addition to the vengih I be sup-
ported, the routine is passed two pointers. The first gives thedonoatiere an existing
weight array is stored, which may b®LL The second gives the location where the
length associated with the existing array is stored.

This routine then usesalloc  to get the space it needs. This will newly allocate (if the
pointer iSNULL) or reallocate memory. The routine then fills in elememds were not in
the previous array (if any). It may be used to shorten an array imgre commonly used
to create an array or lengthen aséng array.

6 More Kernel Changes

The code described in previous sections will provide a-pegformance FFT, but we can
still do better.
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6.1 Group Butterflies by Weight

In our latest FFT kernel (section 3.3.6), the second set of loopsmsrémneral butter-
flies with one weight per call:

for(p =1;p <P -2 +4p)
for (kO = 0; kO < 1<<n[p]; ++k0)
FFT4_1WeightPerCall(vOut, kO, 1<<N - n[p], weights[k0]);

Implicit in this call is that the contents wéights(k0]  are read from memory into regis-
ters. There is one such read for every iteratiorogrand iterations ok0 are repeated in
subsequent iterations @n We can eliminate some of the reads by iteratingoofirst
and then om, that is, by swapping the order of the loops.

6.1.1 Calculate New Loop Bounds

34

The inner body of the two loops is executed a number of timels,timae with a pair of
values forp andko. Consider the set of all such pairs. The current code exebetesdy
with each of those pairs, in a certain order.

Our goal is to execute the body with the same set of pairg) lbudifferent order. To do
rearrange the loops and get the same pairs, we must catwahateounds on the variable
used in each loop. Since the upper boun#@ctodepends omp, this requires some mathe-
matics.

The existing code shows us trivially that the set of pairky] for which the body is exe-
cuted contains those pairs satisfj 1< p<P-2and0<k, <2™.

n, increases strictly ag increases, sp<P-2 and k, < 2™ imply p is at mostP-3 and
thereforek, <2"™. So we can sap < k, <2™, and that gives us bounds for an outer

loop onko. Next we consider the bounds for an inner lpofphose bounds must depend
on the value oko.

It can be shown that the loop boundspare max({, [{Jog, k, +4-m,)/20)< p<P-2.
However, it is simpler to keep the lower bound fian an auxiliary variableLower and
increasepLower whenever the constrairk, < 2™ is violated:

pLower = 1,
for (kO = 0; kO < 1<<n[P - 3]; ++k0)
if (! (kO < 1<<n[pLower]))
++pLower;
for (p = pLower; p<P - 2; ++p)
FFT4_1WeightPerCall(vOut, kO, 1<<N - n[p], weights[kO]);
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Observe that the initial values fpirower andko satisfy k, < 2™, becausé < 2™, and a

single increment tpLower when the constraint is violated suffices to restore it because
k0 never increases by more than one per iteration.

6.1.2 Check the New Calculation Order

We have reordered the calculations and should ensure that we havelatetvine nec-
essary order. The problem may be phrased in the following way. Coasigdement in
vout with indexk. Whenp is 0, this element will be read once, used in calculations, and
then written once. This will occur again whens 1, 2, 3, and so on. These uses of the
element must occur in that order, so that when it is reag=forit contains the result cal-
culated whem=p-1. How do we know the new loop order satisfies this?

The element with indek is read once and written once per value,dadpecifically when
ko has the valudg/2" ™ [. As p increases, the values kif form a nordecreasing se-

guence. Then we can easily see that sorting the pairs of {pJu@9 lexicographically
first by p and then byo (the original loop order, iterating gnand therko) yields the
same order as sorting the pairs firstkoyand then by (the new loop order). Thus al-
though the references to different array elements have beetered, the references to
any one array elemektare in the same correct order as they wereraily.

6.1.3 Optimize the Code

A few calculations can be saved by creating an auxil@wp ko handle the increments to
pLower . The code above evaluate® < 1<<n[pLower] " and k0 < 1<<n[P -3]” In
each iteation onko. As long aspLower < P -2, the former implies the latter, so, each
time ko changes, we need test only the former. When it fails, then Wweanaiement
pLower , and we must test the latter. Observe tRatk“1<<n[pLower] " fails just as we
have incrementedo to the valueil<<n[pLower] . If “pLower < P -2", then 0 <
1<<n[P - 3] 7, and viceversa, SO we can uspLbwer <P -2 as our test:

for (pLower = 1, kO = 0; pLower < P -2 ; ++pLower)

for ( ; kO < l1<<n[pLower]; ++k 0 )

for (p = pLower p <P -2 ; HHp
FFT4_1WeightPerCall(vOut, kO, 1<<N - n[p], weights[k0]);

To summarize, the new loops above execute all the same craiifsata weightPerCall
as the original code (repeated below for reference) but infereht and more efficient

order.
for(p =1;p <P -2 ++p)
for (kO = 0; kO < 1<<n[p]; ++k0)
FFT4_1WeightPerCall(vOut, kO, 1<<N - n[p], weights[kO]);

6.2 Separate the Weightless Butte rflies

We used special butterfly routines for the first pass because tha significant gain
from eliminating multiplications when weights are not needed. Nowwkahave rear-

2.1, August 8, 2004 35



Construction of a High-Performance FFT

ranged the second set of loops in the kernel, we have again gtogp#ter a set of but-
terflies in whichkg is zero. We again separate these from the rest:

pLower = 1,

for (p = pLower;p <P -2 ;Hp )
FFT4_O0Weights(vOut, vOut, 1<<N - n[p));

for(k0=1 ;pLower<P -2 ; ++pLower)

for ( ; kO < l1<<n[pLower]; ++k0 )

for (p = pLower;p <P -2 ;Hp )
FFT4_1WeightPerCall(vOut, kO, 1<<N - n[p], weights[kO]);

The first loop is always executed and is no longer guarded bypadpetésts fLower <
P-2”" or “k0 < 1<<n[pLower]  ”. However, the former is implied by< P -2 7, which is
evaluated, and the latter is true becawsés implicitly O, so this separation of the first
loop is safe.

6.2.1 Create A Variant of FFT4_0Weights

FFT4_OWeights has both an input array and an output array as arguments. We ahly nee
one array in this instance and could use another specialization adutnee. The per-
formance gain is likely to be slight or zero, as the addralesilations for the second ar-
ray might be computed entirely in parallel with the floafpmint data calculations.

However, there may be a more important reason for using a separgnt of this rou-
tine. The initial pass is an opportune place to perform additional gingesuch as rear-
ranging the data in memory so that it is arranged in a atyig efficient for the remain-
ing routines. In such a case, you will need a variarEod_oweights that does the addi-
tional processing and another variant that does not do the additiocedsing.

6.3 Update the Kernel
Our FFT kernel now is:

if (N & 1)

FFT8_0Weights(vOut, vin, 1<<N);
else

FFT4_0Weights(vOut, vin, 1<<N);

FFT4_1WeightPerCall(vOut, kO, 1<<N

if(p<P -1)
FFT4_1WeightPerlteration(vOut, 1<<N

FFT4_Final(vOut, 1<<N - 2, weights);

pLower = 1,

for (p = pLower;p <P -2 yHp )
FFT4_0Weights(vOut, vOut, 1<<N - n[p]);

for(k0=1 ;pLower<P -2 ; ++pLower)

for ( ; kKO < l1<<n[pLower]; ++k0 )

for (p = pLower;p <P -2 ; HHp

)
- n[p], weights[k0]);

- 4, weights);

36

2.1, August 8, 2004



Construction of a High-Performance FFT

This code refers to[p] , representing,. We do not actually need an array to hold values
of n,; we can calculate them. There is-a& fnap betweep andn,, and the operations we
use on them are isomorphic under the map. (Notably, inequalities invgvang iso-
morphic becauss, is a strictly increasing function of) So every reference pmay be
replaced by an equivalent referenceéjo

We will replace all references 9 pLower , andn[p] by equivalent epressions of new
variablesn and nLower . n will contain the value previously expressed rjy] , and
nLower Will contain the value previously expressednyLower] . The substitutions to
make are:

* pLower=1 becomesiLower=N&1?3:2
* p=plLower becomes =nLower

* p<P -2 becomes<N -4.

e ++p becomes +=2 .

* ++pLower becomesLower +=2

 n[p] becomes.

* n[pLower] becomesiLower .

The new code is:

FFT Kernel with Reordered Loops and Separated Loogor k=0
if (N&1)

FFT8_ 0Weights(vOut, vin, 1<<N);
else

FFT4_0Weights(vOut, vin, 1<<N);

nLower = N&1 ? 3: 2;

for (n=nLower;n <N -4 ;n+=2 )
FFT4_O0Weights(vOut, vOut, 1<<N - n);

for(k0=1 ;nLower<N -4 ;nLower +=2)

for ( ; KO < l1<<nLower; ++k0 )

for (n=nLower;n <N -4 ;n+=2 )
FFT4_1WeightPerCall(vOut, kO, 1<<N - n, weights[kO0]);

if(n<N -2)
FFT4_1WeightPerlteration(vOut, 1<<N - 4, weights);

FFT4_Final(vOut, 1<<N - 2, weights);

With all references t@ gone, the entire FFT structure is now built into the kernel. We
could have made these substitutions earlier, but the reasoning in $ettiodepends on

p being an integer and would be harder to express in termsAdgo, these substitutions
specialize the kael for a particular scheme ofs. By developing the kernel to this point
before making the substitutions, it could instead be specialized to other schemes.
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6.4 Incorporate Bit -Reversal Permut ation

The result of the FFTy, is the bitreversal permutation of the desired resdlt(This is
demonstrated in section 2.3). As mentioned in section 4.3.5.1, the final jpaseppor-
tune place to rearrange the results in memory to proHuoestead ofvy. Here is one
scheme for doing so.

6.4.1 Read Groups of Elements and Write in Bit -Reversed Locations
To do one butterflyrFT4_Final reads and writes four elements with indic&g+i, for
the four vdues ofki, 0, 1, 2, and 3. In the final pas3<sk, <N  (ds seen by the fact
thatFFT4_Final is called with1<<N-2 as the upper bound @n). Essentiallyk, hasN-2

bits in the final pass. Separdginto its highest two bitsky, and its remainingN-4 low
bits, ki, SOko=2""ky+ky.

Let k;, be the bitreversal of the two bits d4;. Let k| be the bireversal of theN-4 bits
of k.. Let k; be the bitreversal of the two bits df.. Observe that the bieversal of the
N-bit number 4(ky+k ) +ka is 42" 4K, +k! )+K.,.

FFT4_Final iterates through all values &§, performing one butterfly on four elements
in each iteration. Instead, iterate through valuek pperforming four butterflies on 16
elements in each iteration.

Specifically, in each iteration, read the 16 elements with indic€%'K(2k )+k,. Paform
four butterflies on these elements, with the appropriate foughtseiWrite the esults to

the 16 array elements with indicéé’z’\““ki + kL)+ ki,. That is, write the result with in-
dex 4(2"%kq+k)+ky in vy to the bitreversed indexd(2"*k; + k! )+k,, which is its de-
sired lo@tion in H.

When the iterations are completed, the output array will contaittsdaa the order de-
sired, matchingd rather tharvy.

6.4.2 Problems

Attempting to do this irplace will destroy the array, becauksge will in many iterations
be a value that_ has not yet reached. Then data needed in the future is demwAnN
easy solution is to use a separate array for output in the fingl ipasemory is available.
Another solution is to read the 16 old elements just before we ovetigite with new
results. Doing that presents another problem: What do we do witl6teierhents just
read? It also presents an opportunity: Make use of them. Firsh, liielp to define some
termindogy.

6.4.3 Terminology

Let the term k_-elements” refer to the 16 elements that are indexed by ksiagd the
16 canbinations of values dfy andk;. That is, thek -elements are those whose indices
in the array are:
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{a(2"*k, +k )+k [0<k <400<k, <4}.
Such an index is essentially the-itse concatenation &, k., andk;.

Let the term k_-reverseeelements” refer to the 16 elements that are indexed by using the
bit-reversal ofk. and the 16 combinations of the-b#versals of the values &f andk;.
That is, thek -reverseeelements are those whose indices in the array are:

{a2" K +K; )+ K, [0<k <400<k, <4}.
Similarly, one of these indices is the-hiise concatenation df;, k; , andkj,.
Observe that thia -reverseeelements are also the -elements. That is:

{42"*k; +K )+ K, |0<k <400<k, <4}=
{42k, +k )+ Kk, 10k <400<k, <4,

This is a subtle statement, for the sets look very similat,isainsurprising that they are
equal. It embodies the fact that the set of values {0, 1, 2, 3;fequals the set of bit
reversed values {0, 2, 1, 3} fdt;, and viceversa. It is important because it means that
the 16 oldk -reverseeelements we read just before overwriting them are precikely t
ki -elements we can use for new butterfly operations.

6.4.4 Solution
We are ready to redesigirT4_Final to perform butterflies and permute the results effi-
ciently. After processing sonie-elements, we will read/ -elements and process those.

When those are done, they are stored inkthelements. At that point, thie -elements
were already done, so we are free to go on to a new vakye of

If we write FFT4_Final with a loop whose body performs four butterflies on 16 ele-
ments, there are three cases to distinguish in each iteration:

* k_=k{.Thek_-elements are thk -elements, so there is no need to readkthe
elements and perform more butterflies. We just go on to a new vakue of

* k_ #k and we have just done tlke-elements. We must read tte-elements
for the next iteration.

* k_ #Zk/ and we have just done tlke-elements. We must go on to a new value of

Ki.

Going on to a new value &f is a problem, as we must skip elements that were already
processed wherk; indexed those elements in prior iterations.
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Fortunately, the three cases can all be implemented in siogdetibat uses a table to de-
termine which location to read next and which location to write nesindJa table both
eliminates the computation of b#tversals during the FFT execution and eliminates test-
ing and branching to handle separate cases.

We will prepare a table that contains value.oin the order we would like to process
them and the corresponding valueskpf Like the weights, this table can be prepared be-
fore the first FFT is executed.

Consider this pseudcode:

q=0;

Read k - elements using k L = IndexTable[q].read;
Perform butterflies on input to get output.

for (g=1;q<1<<N -4; ++q)

Read k - elements using k L = IndexTable[q].read;
Write k |- reversed - elements using k .’ = IndexTable[q - 1].write;
Perform butterflies on input to get output.

}

Write k |- reversed - elements using k .’ = IndexTable[q - 1].write;

As discussed, this code reads data, performs butterflies, andetienthe next set of in-
put before writing output. It reads the next set of input in each iteraThis is necessary
in the second of the three cases above. It is unnecessary in theasthebut causes no
harm.

In section 6.4.6, | demonstrate C code that is nearly identical to the psedeto

q=0;
ReadElements(IndexTable[q].read);
PerformButterflies(weights[q]);

for (q =1; g < cH; ++q)

ReadElements(IndexTable[q].read);
WriteReversedElements(IndexTable[q - 1].write);
PerformButterflies(weights[q]);

}

WriteReversedElements(IndexTable[q - 1].write);

What should be stored in the index table? We have two requirements:

« Each value ok_ such thatk, =k/ is stored as a single table entry, with the same

value in theead andwrite members.
» Each value ok_ such thatk, # k| must be stored as a pair of entries. In one en-

try, read containsk. andwrite containsk| . In the otherjead containsk; and
write containsk, . The order of these two entries does not matter.

2.1, August 8, 2004



Construction of a High-Performance FFT

Other than this, the table entries may be ordered as desired.if@hémg order within
these constraints will not alter the results that are computed,rbight change perform-
ance, as we will see in section 7.4.

6.4.5 Index Table Implementation

This routine generates a table of indices for the final passidfimitions of the routines
rw andilog2 , see section 5.2. See comments in section 5.3 about the arguments.

Finallndices
typedef struct {
unsigned short int read, write;
} Finallndices;
GenerateFinallndices
static int GenerateFinallndices(
Finallndices **indices, /I Pointer to index array address.
int NewLength /I New length to support (1<<N).)
{
/I Prepare to bit - reverse a number of N - 4 bits (see below).
const int shift = 32 — (ilog2(NewLength) —4);
int kL;
/I Try to allocate space and check result.
Finallndices *p = (Finallndices *)
realloc(*indices, NewLength/16 * sizeof **indices);
if (p == NULL)
return 1;
/I Pass address back to caller.
*indices = p;
/I Iterate through all values of kL.
for (kL = 0; KL < NewLength/16; ++kL)
{
/I rw(KkL) reverses kL as a 32 - bit number. To getitas
/I the reversal of an N - 4 bit number, shift right to
/[ remove 32 - (N-4) bits.
const int kLprime = rw(kL) >> shift;
/l'If KLprime < KL, then kL in a previous iteration had the
/I value kLprime has now, and we do not want to rep eat it.
if (KL <= kLprime)
/I'If KL == kLprime, add one table entry.
/I'If KL != kLprime, add table entries in both orde rs.
*(p++) = Construct( kL, kLprime );
if (KL < kLprime)
*(p++) = Construct( kLprime, kL );
}
}
return O;
}
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The routineConstruct  used in the above code is used to constriraiaiindices ob-
ject. It is unneeded in C 1999 (ISO/IEC 98B309) but is needed by older compilers:

Construct
static Finallndices Construct(unsigned int read, unsigned int write)

Finallndices result = { read, write };
return result;

}

Using short int for the indices has some advantage in an AltiVec implementdtitn,
it limits the vector length that the FFT can operate oshoftint  is commonly 16 bits.
Limiting k. to 16 bits limits the entire index to 20 bits, so only vectors of aup t
2?°=1,048,576 elements can be supported.

6.4.6 C Implementation

The C code fragment in section 6.4.4 will become the body of ouFResvFinal rou-
tine.

6.4.6.1 FFT4_Final

Here is the newFT4_Final routine. The weights required by this routine are described
in section 6.4.8, and | add some code that will be explaided/b

FFT4 Final With Bit -Reversal Permutation

static void FFT4_Final(
ComplexArray vOut, /I Address of output vector.
int uo, /I Upper bound on kO.
const Finallndices IndexTable[], // Array of index pairs.
const FinalWeights weights] /I Array of weight values.
)
{
typedef float FloatBlock[4];
FloatBlock aor, a0i, alr, ali, a2r, a2i, a3r, a3i,
bir, bli, b2r, b2i, b3r, b3,
cOr, cO0i, c1r, cli, c2r, c2i, c3r, c3i,
dOr, dOi, d1r, d1i, d2r, d2i, d3r, d3i;
intg=0;
ReadElements(IndexTable[q].read);
PerformButterflies(weights[q]);
for (g =1; g <u0>>2; ++q)
ReadElements(IndexTable[q].read);
WriteReversedElements(IndexTable[q - 1].write);
PerformButterflies(weights[q]);
}
WriteReversedElements(IndexTable[q - 1].write);
}

The various declarations above (sucha@s) are present even though they appear to be
unused because | will use macros to show the operations in the raumth&e macros
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will use the declared identifiers. The macros expand to code ioattitext of the routine
and have access to all of its ider@6. This is usually poor style for code to be used in
actual programs, but it serves well here tcsitiate the algorithm.

Note thatq is iterated from zero ta0>>2. In the original version afFT4_Final , in sec-
tion 4.3.5,u0 iterations were performed. In this new version, four butterfliespar-
formed in each version, and so onby>2 iterations are needed.

6.4.6.2 ReadElements

ReadElements , below, reads th& -elements. Previous radik butterfly routines oper-
ated on four elements at a time, kept in objects of iye . We now do four butterflies
on 16 elements (four sets of four) so we will keep them in objedigpeffioat [4]
and use array indices to access the elements within those objects.

We should study the array indices carefully. In the original @ersif FFT4_Final , in
section 4.3.5, the index had the form#ko + k1 ”. In this version, we have separated
into ki and kL. We definedky and k. so thatk=2""*ky+k., so 4y tk; becomes
22y +ak +ki. 2¥% is passed t6FT4_Final in the parametero (see section 6.3). Thus,
we may use the formub*kH + 4*kL + k1~ ". For example, wheky is 2 andk; is 1, the
array index isio*2 + 4*kL+1 .

Observe that the real (or imaginary) components of the four elsrassdciated with one
value ofky and four values df; are placed byreadEl ements one apiece intaor , alr,
a2r , anda3r, in order and ready for butterfly calculations. However, the compoasnts
sociated with four values &f; (0, 1, 2, and 3) and one valuekpfare placed four apiece
into one of the objectadr , alr , a2r , ora3r) in bit-reversed order (0, 2, 1, and 3).

This does not affect the butterfly calculations (as long axdhect weight is used in
each position). Each of the four butterflies operates on one eleraanadr , one from

alr , one froma2r , and one froma3r , and the contents of other elements do not affect the
butterfly. The advantage of putting the elements in this order tigshitbgp are then in the
order in which they must be written to memory. That makes the write operationsrsimpl

ReadElements
#define ReadElements(kL)
{

aor[0] = vOut.re[u0*0 + 4*kL + 0];
alr[0] = vOut.re[u0*0 + 4*kL + 1];
a2r[0] = vOut.re[u0*0 + 4*kL + 2];
a3r[0] = vOut.re[u0*0 + 4*kL + 3];
aor[1] = vOut.re[u0*2 + 4*kL + 0];
alr[1] = vOut.re[u0*2 + 4*kL + 1];
a2r[1] = vOut.re[u0*2 + 4*kL + 2];
a3r[1] = vOut.re[u0*2 + 4*kL + 3];
aor[2] = vOut.re[u0*1 + 4*kL + 0];
alr[2] = vOut.re[u0*1 + 4*kL + 1];
a2r[2] = vOut.re[u0*1 + 4*kL + 2];
a3r[2] = vOut.re[u0*1 + 4*kL + 3];

e e -
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aor[3] = vOut.re[u0*3 + 4*kL + 0];
alr[3] = vOut.re[u0*3 + 4*kL + 1];
a2r[3] = vOut.re[u0*3 + 4*kL + 2];
a3r[3] = vOut.re[u0*3 + 4*kL + 3]
a0i[0] = vOut.im[u0*0 + 4*kL + Q];
ali[0] = vOut.im[u0*0 + 4*kL + 1];
a2i[0] = vOut.im[u0*0 + 4*kL + 2J;
a3i[0] = vOut.im[u0*0 + 4*kL + 3];
a0i[1] = vOut.im[u0*2 + 4*kL + O];
ali[1] = vOut.im[u0*2 + 4*kL + 1];
a2i[1] = vOut.im[u0*2 + 4*kL + 2J;
a3i[1] = vOut.im[u0*2 + 4*kL + 3];
a0i[2] = vOut.im[u0*1 + 4*kL + O];
ali[2] = vOut.im[uO*1 + 4*kL + 1];
a2i[2] = vOut.im[uO*1 + 4*kL + 2J;
a3i[2] = vOut.im[uO*1 + 4*kL + 3];
a0i[3] = vOut.im[u0*3 + 4*kL + Q];
ali[3] = vOut.im[u0*3 + 4*kL + 1];
a2i[3] = vOut.im[u0*3 + 4*kL + 2J;
a3i[3] = vOut.im[u0*3 + 4*kL + 3];

e e T T T T o o T e o o o

}

6.4.6.3 WriteReversedElements

WriteReversedElements  writes thek| -reverseeelements. Because the elements in each
array are in the desired order, each array can be writtenrtmmevith a simple loop.
Note thatky was bitreversed tdk;, by rearraging the elements iReadElements , andk,

was bitreversed tok| by reading it from a table, bli has not been biteversed yet.
That is done here, by using 0, 2, 1, and 3 in the highest bits of the element indices:

WriteReversedElements
#define WriteReversedElements(kLprime)

{

int kHprime;
for (kHprime = 0; kHprime < 4; ++kHprime)

vOut.re[u0*0 + 4*kLprime + kHprime] = dOr[kHprime];
vOut.re[u0*2 + 4*kLprime + kHprime] = d1r[kHprime];
vOut.re[u0*1 + 4*kLprime + kHprime] = d2r[kHprime];
vOut.re[u0*3 + 4*kLprime + kHprime] = d3r[kHprime];
vOut.im[u0*0 + 4*kLprime + kHprime] = dOi[kHprime];
vOut.im[u0*2 + 4*kLprime + kHprime] = d1i[kHprime];
vOut.im[u0*1 + 4*kLprime + kHprime] = d2i[kHprime];
vOut.im[u0*3 + 4*kLprime + kHprime] = d3i[kHprime];

e e e e e m —m — — — —

}

6.4.6.4 PerformButterflies
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Finally, PerformButterflies does the calculations:

PerformButterflies
#define PerformButterflies(weight) \
{ \
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int i;

for (i=0; i< 4; ++i)

{
blr[i] = - ali[i] * weight.w1i[i] + a1r[i];
b1i[i] = + alr[i] * weight.w1i[i] + ali[i];
b2r[i] = - azifi] * weight.w2i[i] + a2rfi];
b2i[i] = + a2r[i] * weight.w2i[i] + a2i[i];
b3r[i] = - aa3i[i] * weight.wai[i] + a3r[i];
b3i[i] = + a3r[i] * weight.wa3i[i] + a3i[i];
cOr[i] = + b2r[i] * weight.w2r][i] + aOr[i];
cOi[i] = + b2i[i] * weight.w2r[i] + a0i[i];

c2rfi] = - b2r[i] * weight.w2r][i] + aOrf[i];
c2ifi] = - b2i[i] * weight.w2r[i] + aO0i[i];
c1rfi] = + b3r[i] * weight.w3r[i] + b1r]i];
clifi] = + b3i[i] * weight.w3r[i] + b1ii];
c3r[i] = - b3r[i] * weight.w3r][i] + b1r[i];
c3i[i] = - b3i[i] * weight.w3r(i] + b1i[i];
dor[i] = + c1r[i] * weight.w1r[i] + cOr[i];
doi[i] = + c1i[i] * weight.w1r[i] + cOi[i];
dirfi] = - clr[i] * weight.wlr[i] + cOr[i];
diifi] = - cli[i] * weight.war[i] + cOili];
darfi] = - ¢3i[i] * weight.wlr[i] + c2r[i];

d2i[i] = + c3r[i] * weight.w1lr[i] + c2i[i];
d3r[i] = + c3i[i] * weight.w1r[i] + c2r]i];
d3ifi] = - ¢3r[i] * weight.wlr[i] + c2i[i];

o e T T T T T T o T T o o o T T T o o o m — — — —

6.4.7 AltiVec Implementation

The C code in section 6.4.6 converts very nicely to AltiVestructions. The
WriteReversedElements and PerformBuitterflies macros are straigforward, but
ReadElements requires some workReadEl ements permutes the elements as it reads
them, which is often a miserable task in AltiVec work. Fortuyatble permutations we
need work well.

6.4.7.1 ReadElements, Part |

Before permuting the elements, they must be read from meRwEl ements is shown
with array index expressions that imply a good deal of addriésmatic. These calcula-
tions can be simplified:

* Values of 0, 1, 2, and 3 fd; correspond to certain addresses in the data array,
four addresses for the real components and four for the imaginaryonentp.
Calculate these addresses once per FFT and store them irersegiamed
highbitsOOr ,  highbitsO1r , highbits10r , highbits11r ,  highbits00i ,
highbitsO1i  , highbits10i  , andhighbits11i

* When a value fokL is assigned, calculate the byte offsetafL elements (that
is, the number of bytes from an element with some index the element with
indexk + 4*kL) . Store this offset in a register nametex .
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With these preparations, the AltiVec instructiolx“y1r, highbitsOlr, index
loads four real components into the registar . Those four components are
vOut.re[u0*1+4*kL+0] , vOut.re[u0*1+4*kL+1] , vOut.re[u0*1+4*kL+2] , and
vOut.re[u0*1+4*KL+3] . (See section 6.4.6.2 regarding the useooés the coefficient
for kH, which has the value 1 in this example.) Address arithmethmgsgimple, and the
instructions needed to load all 16 complex elements are:

AltiVec ReadElements, Part |

Ivx yOr, highbits0O0r, index
Ivx y1r, highbitsO1r, index
Ivx y2r, highbits10r, index
Ivx y3r, highbits11r, index
Ivx y0i, highbits00i, index
Ivx y1i, highbits01i, index
Ivx y2i, highbits10i, index
Ivx y3i, highbits11i, index

6.4.7.2 ReadElements, Part Il

46

Next we need to rearrange the elements within the regigtéosthe bitreversed order.
Here are instructions for the real components:

AltiVec ReadElements, Part Il

vmrghw zOr, yOr, y1r # Merge lesser of two highest bits.
vmrglw z1r, yOr, y1r

vmrghw z2r, y2r, y3r

vmrglw z3r, y2r, y3r

vmrghw aor, zO0r, z2r # Merge higher of two highest bits.
vmrglw alr, zOr, z2r

vmrghw azr, z1r, z3r

vmrglw a3r, z1r, z3r

Ther suffix designates real components. Similar code will load,aege, and store the
imagnary components. This diagram illustrates the effects of the merggcirsts:
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[00.

..00{00...01]00...10[00...11]  [o01...00[01...01]01...10]01...11]  [10...00[10...01]10...10]10...11] [11..00[11...01]11...10]11...11]

A J

/ / A
...00[01...00]00...01]01...01]  [00...10[01...10]00...11]01...11] [10...00[11...00[10...01]11...01] [10...10[11...10[10...11]11...11]

Y
[00...00[10...00[01...00[ 11..00]  [00...01[10...01]01...01]11...01] [o00...10[10...10]01...10[11...10] [00...12]10...1101...12]11.. .11]

Observe that the elements within each block are now in order liyttreversals of the
highest two bits (00..., 10..., 01..., 11...). These elements are ready forgto mem-

ory in the ader they are irH. However, the four blocks are in order by the lowest two
bits (...00, ...01, ...10, ...11), not the biversals of those bits. This makes sense be-
cause we still want to perform a butterfly operation on this, detd it will be the same
butterfly we have used so far, taking as input elements indexe®0add 3, which we
have placed in registers named , ao0i , air , ali , a2r, a2i , a3r, anda3i .

6.4.7.3 WriteReversedElements

When we have the results in registers nadted doi , dir , dii , d2r , d2i , d3r, andd3i ,
we will write those in bireversed order:

AltiVec WriteReversedElements
stvx dOr, highbits0O0r, index
stvx d1r, highbits10r, index
stvx d2r, highbits01r, index
stvx d3r, highbits11r, index
stvx dOi, highbits00i, index
stvx d1i, highbits10i, index
stvx d2i, highbits01i, index
stvx d3i, highbits11i, index

6.4.7.4 PerformButterflies
An AltiVec implementation oPerformButterflies IS:

AltiVec PerformButterflies
vnmsubfp blr, ali, wli, alr
vmaddfp  bli, alr, wili, ali
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vnmsubfp b2r, a2i, w2i, a2r
vmaddfp  b2i, a2r, w2i, a2i
vnmsubfp b3r, a3i, w3i, a3r
vmaddfp  b3i, a3r, w3i, a3i

vmaddfp  cOr, b2r, w2r, aOr
vmaddfp  cO0i, b2i, w2r, a0i
vnmsubfp c2r, b2r, w2r, aOr
vnmsubfp c2i, b2i, w2r, a0i
vmaddfp  clr, b3r, w3r, blr
vmaddfp  cli, b3i, w3r, bli
vnmsubfp c3r, b3r, w3r, blr
vnmsubfp c3i, b3i, w3r, bli

vmaddfp  dOr, c1r, wlr, cOr
vmaddfp  d0i, cli, wir, cOi
vnmsubfp dir, clr, wlr, cOi
vnmsubfp d1i, cl1i, wir, cOi
vnmsubfp d2r, c3i, wir, c2r
vmaddfp  d2i, ¢3r, wlr, c2i
vmaddfp  d3r, ¢3i, wilr, c2r
vnmsubfp d3i, c3r, wir, c2i

The above code presumes that weight values have been loadedjistersenamediir,
wli, w2r, w2i , w3r, andw3i .

6.4.8 Generate Final Weights
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Earlier butterfly routines required six values for one weighofoe value ok; at a time.
FFT4_Final now performs butterflies for four values kf at a time, so it needs values
for four weights. Further, the values lgfare not consecutive, and their order varies de-
pending o\, so FFTs of different lengths need different groups of weights.

In one iteration omy, FFT4_Final performs butterflies using values fiy of 2V40+k,
2V 2+k , M1+, and 20+k_, wherek, has the value loaded fromdexTable . The
butterfly data is in the processor registers in that order (@, &hd 3), so the weight val-
ues should be available in that order.

This is all the information we need to generate weights#as_Final . First, the six
weight vdues for four butterflies are packaged in groups of four, like this:

FinalWeights
typedef struct {

float wir[4], wli[4], w2r[4], w2i[4], w3r[4], w3i[4 1;
} FinalWeights;

Next, the values are calculated and storeddngrateFinalweights  , below.

The expressionrdkL + kHprime*rn " used in the code below equai@(2V*k4+k.)),
which is r(4p), as required. (See section 5.3.) To see this, note4thatis assigned the
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valuer(4k,), m is assigned the valuen , which is 1/2, andkHprime representsk;, .
Then:

r4kL + kHprime*rn =r(4k, )+k;, 12",

=r(4k, )+ 2%r(k, )/2", by definition ofk;, and Lemma1).
r(4k )+r(2"2k, ), by Lemma4).

=r(ak,_+2"2k, ), by Lemma3).

= r(4k, ), by definition ofk_andk.

GenerateFinalWeights

static int GenerateFinalWeights(
FinalWeights **weights, /I Pointer to weight array address.
int NewLength, /I New length to support (1<<N).
Finallndices *indices /I Index array address.)

const double rn = 1./NewLength;
int kHprime, q;

/I Try to allocate space and check result.
FinalWeights *p = (FinalWeights *)

realloc(*weights, NewLength/16 * sizeof **weights);
if (p == NULL)

return 1;

for (g = 0; g < NewLength/16; ++q)

const int kL = indices[q].read;

const double r4kL = r(4*kL);

for (kHprime = 0; kHprime < 4; ++kHprime)

{
const double x = TwoPi * (r4kL + kHprime*rn);
plg]-wlr[kHprime] = cos(x);
p[g]-wli[kHprime] = tan(x);
pla]-w2r[kHprime] = cos(x+x);
plg]-w2i[kHprime] = tan(x+x);
plg]-w3r[kHprime] = 2. * p[q].w2r[kHprime] -1,
pl[g]-w3i[kHprime] = tan(3.*x);

}

/! Pass address back to caller.
*weights = p;

return O;

}

6.4.9 Update Kernel

The newrFT4_Final routine must be passed a table of indices and an array of weights
different from the previous weights, so the kernel has to pass the new arguments
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FFT Kernel with Final Indices and Weights

if (N & 1)

FFT8_0Weights(vOut, vin, 1<<N);
else

FFT4_0Weights(vOut, vin, 1<<N);

nLower = N&1 ? 3 : 2;
for (n=nLower;n <N -4
FFT4_0Weights(vOut, vOut, 1<<N

for(k0=1 ;nLower<N -4
for ( ; KO < l1<<nLower; ++k0 )
for (n=nLower;n <N -4

FFT4_1WeightPerCall(vOut, kO, 1<<N

if (n<N -2)
FFT4_1WeightPerlteration(vOut, 1<<N

FFT4_Final(vOut, 1<<N

‘n+=2 )

; nLower += 2)

;n+:2

- 2, finallndices, finalWeights);

- n),

)
- n, weights[kO0]);

- 4, weights);

6.5 FFT Kernel Routine

The inputs to the FFT kernel ar@n, vOut, N, weights , finalindices ,
. We can take the code fragment we have developed and make it into a

finalWeights
complete routine:

FFT Kernel Routine

and

static void FFT_Kernel(
ComplexArray vOut,
ComplexArray vin,
int N,
const CommonWeight *weights,

int n, nLower, kO;

if (N&1)

FFT8_0Weights(vOut, vin, 1<<N);
else

FFT4_0Weights(vOut, vin, 1<<N);

nLower = N&1 ? 3: 2,
for (n=nLower;n <N -4
FFT4_0Weights(vOut, vOut, 1<<N

for(k0=1 ;nLower<N -4
for ( ; kO < l1<<nLower; ++k0
for (n =nLower;n <N -4

ifh<N -2
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const Finallndices *finallndices,// Index pairs.
const FinalWeights *finalWeights // Final weight va

FFT4_1WeightPerCall(vOut, kO, 1<<N

FFT4_1WeightPerlteration(vOut, 1<<N

/I Address of output vector.
/I Address of input vector.
/I'N.

/I Common weight values.

lues.

n+=2 )
-n);

; nLower += 2)

)
n+=2 )
- n, weights[kO0]);

- 4, weights);
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‘ FFT4_Final(vOut, 1<<N - 2, finalindices, finalWeights);
}

7 Out-of-Cache Performance

7.1 Introduction

The FFT kernel developed so far is excellent when all the memeeded fits within
processor cache, including the transform data, the weights aedofaipidices, and any
miscellaneous data. When the memory does not fit within processw, gaoblems oc-
cur.

7.1.1 Motorola PowerPC CPU 7400 Cache Architecture

Much discussion in previous sections is generally applicable to etywafi computer ar-
chitectures. To discuss designing for hggrformance in the presence of cache architec-
ture issues, it is necessary to be more specific. This pape¥sadd designing for the
Motorola PowerPC CPU 7400 or similar CPUs. This specific CPU beilassumed
throughout the rest of section 7.

The levell (L1) data cache in the Motorola PowerPC CPU 7400 is 32,768 bytes. Th
cache is partitioned into 128 sets. Each set contains eight blockeaemdlock is 32
bytes. This cache architecture is not uncommon, and other procesydnavaea similar
architecture with diffeent dimensions.

Each memory address maps to one set. That is, when the contemtewioay address
are brought into cache, they must go into the set assigned tddifess Any of the eight
blocks within the set may be used. If all blocks are in use, therGikes a block avail-
able by selecting a block and discarding the data in it omgritito memory, as appro-
priate. (The CPU approximatedecting the leastecentlyused block to reuse.)

Using C notation, the byte with address:

* the byte numbereabs32in a block and
* mapped to the cache set numbetied % 128

Concerning cache set mapping, observe that data separatedltiptes of 4096 bytes
(32-128) map to the same cache sei @hdb differ by a multiple of 4096, the@32 %
128 equal/32 % 128 ).

Cache blocks are also called cache linesbyd2 cache blocks are different from the 16
byte blocks loaded blyx instructions and from the programrnsgrecified blocks inist
instructions.

| will refer to the group of 32 bytes in memory that would be loadaxda cache block
together as a cache block even while it is only in memory and not in cache.
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7.1.2 Cache Problems

The cache architecture imposes three important constraints:

* The number of elements that can fit in cache is limited. For aeompimbers of
eight bytes (two floatingpoint numbers of four bytes each), 4096 elements can fit
in cache.

* The number of elements that can fit in a cache set is tmriikements from eight
different addresses that map to the same cache set can fit in the set.

» It is not possible to read less than one cache block from memadiye(ambsence
of special control operations). Reading any byte from memoresalkbytes in
the same block to be read and stored in cache.

We will find that although the entire FFT cannot be perform @wgtin cache, the FFT
can be patrtitioned into sets of butterfly operations such that each set carobegu:en-
tirely in cache.

7.2 The Cache Size Problem

Our goal is to partition the FFT into sets of butterfly operegisuch that each set can be
performed entirely in cache.

A radix-2" butterfly requires 2 input elements, along with some amount of constant
data. Choosing a sufficiently smaillyields a butterfly for which all the data fits in cache.
Then each iteration of the loop &l can be performed in cache.

If mis even smaller, it may be that the data for several ‘&Ubutterflies fit in cache.
Then several iterations of the loop kancan be performed in cache. In that case, we have
a choice:

* We could read the data for one butterfly from memory into cach&rpethe
buttefly, and write the results to memory.

* We could read the data for several butterflies, perform those fhaesteand write
the lesults to memory.

Depending on the bus characteristics, there may be advantageding meare data se-
guentially at one time. If so, we prefer the latter choice, an@vlVeluster iterations of
the loop orko.

7.3 The Cache Set Size Problem

52

In the early passes of an FRTis small, so 2™ is large. Consider arrayeshent indices

of the form 2"k, + 2™k, + ko, which are used by butterfly operations. A single radix
butterfly uses four values &f. These values are stored in elements that aseasgeg by
large multiples of a power of two 2™ elements), so they are assigned to the same
cache set. One cache set can hold values from eight locatioadl. &da for a single
radix-4 butterfly can fit in a single cache set. Afterfpeming such a butterfly, we could
incrementk, and repeat the process until the entire pass were completedt Bhosssi-
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ble to perform an entire butterfly pass while reading andngrigiach element only once,
not having to @doad any element.

However, we wish to perform more than one pass of radiutteflies.

Consider a butterfly in the third radikpass of an FFT. It needs four elements for input.
Each of those elements is calculated in the second-fapass from four different input
elements. So if we wish to calculate two radipasses without reloading data from
memory, there must be 16 elements in cache at the same ttisniose 16 elements are
widely separated in the array, by multiples of a large powéwnof Therefore, they can-
not fit in cache simultaneously unless the cache associativity is at least 16.

If you were so fortunate as to have a cache with an associativit§, attempting three
radix-4 passes would require an associativity of 64.

However, doing one radi# pass on one set of data that has been read into cache is unac-
ceptable. While data is in cache, we want to take the FFT tapefeom v, to Vi for m

of a fairly large size. To perform this rael® butterfly, we need 2 elements, and we

need them to fit in a cache set. Since they do not fit in a ca@the their original mem-

ory locations, we must move them.

Suppose we have a buffer of lengtelements where we can store data temporarily. We
can copy the elements we need for one r2llikutterfly into the buffer, perform the but-
terfly, and copy the elements back to their original locationgo(arew locations if we
like). If the buffer will hold more elements than we need for oneelflytt we can do
several btterflies at one time. The plan is:

(1) Gather elements together: Copy the data for the butterfes $preaebut ad-
dresses in the data array to sequential addresses in the buffer.

(2) Do calculations: For each set df 2lements in the buffer, perform a rad®
butterfly®.

(3) Scatter elements back: Copy the data from the buffer todspregaaddresses in
the data array.

The primary effect of this copying is to move the data fromesddis where they map to
the same cache set to addresses where they map to diffecbetsets. Once the data is
in the buffer, it may be accessed freely in any order withasting other buffered data
out of cache. So we may perform ra@X butterflies efficiently, and the data needs to be
read from the data array once and written back to it oncebdier may reside entirely
cache, so it never needs to be written to or read from meniitrgugh (hopefully small)
portions of it may be cast out and reread as unintended byproducts oirah®ry
opetions.

% This does not mean to perform a radfbutterfly as one operation as showrFirT_Butterflie s, but to peform
it by any efficient means, such as a compositioradix-8 and radix4 butterflies.
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How big should the buffer be, what value shduldave? There are two advantages to in-
creasingp:

* The largerb is, the largem may be, and the more calculations may be done per
element per buffer turnover.

* Using a largeb without a largem may gain some advantage in data transfer on
the bus between memory and cache, if the bus has charactetsticas transfer-
ring sequential addresses more quickly than disordered addresses.

In the latter case, consider that using a lafg&ithout a largem means the data for
more butterflies can be held in the buffermis increased by one, the number of differ-
ent (and norsyuential) locations that must be read is doubled. Howeweiisiincreased
while m remains the same, more data can be read (sequentially) fohnofethe 2' loca-
tions. Thus, increasing may increase data transfer rates, while increasingcreases
the computations per buffer turnover.

Half of cache is a good choice. If the buffer filled all of ecgabther necessary data, such
as weights, could not be kept in cache. If we make the bufferesmak lose the above
perfomance advantages.

The truly ambitious implementer could use a buffer between half and all of cache.
A design to use such a buffer for the first stage of an FFT is in section 7.6.1.

7.4 The Cache Block Size Problem

Reading any byte from memory causes all bytes in the sante block to be read and
stored in cache. For the most part, this is not a problem for theddta is operated on
in AltiVec blocks of four floéing-point numbers at a time. Four singleecision floating
point numbers take 16 bytes, half of thel32e cache block. If real and imaginary com-
ponents of the complex data are stored in the same cache blockpuh@ormplex ele-
ments acupy exactly one cache block, and the cache block size coincidlesithethe
FFT oerations.

If the real and imaginary components are stored separately,attengon must be paid
to cache block use.

Most FFT operations iterate sequentially through value® @ndk2. As the operations
iterate through the data, they will use first one half and theottiex half of each cache
block, thus copleting the use of all the data in the block while it is in cache.

An exception isFFT4_Final , which processes fowalement blocks in an order partially
dictated by the biteversal permutation. This order does not necessarily use both halves
of a cache block in successive iterations.

However, it can be made to do so. As stated in section 6.4.4, themgoacenstraints
about storing index pairs, but we otherwise have a good deakdbirein arranging the
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index table. We can cluster indices that reside in the sarhe témcks. Recall that each
index in the tablek) addresses a group of four elements €0, 4 +1, 4 +2, and

4k +3). With separated real and inmagry components, we need eight array elements to
fill a cache block, so we need two indicks &éndk _+1) to be clustered in the indegbte.

For example, suppose that is even and the arrays of real and imaginary components
each begin on cache block boundaries. After we usk teeements (see terminology in
section 6.4.3), we will want to use thie €1)-elements whose components are in the
same blocks. (Note that we have now added the constraint thatrtys should be
aligned to cachdlock boundaries for best performance. Whers even, we are depend-
ing on thek, -elements to be in the same blocks as the (kletdhents and not the (kL
1)-elements.)

However, organizing the table is not as simple as pairing eastkewith k +1. When
thek_-elements are used, the -reverseeelements are used as well.Kf # k| , then the

ki -elements and -reverseeelements are also used with the preceding or following in-
dex table entry. We must cluster all of thesenelnts with their cachblock partners.

Fortunately, this is accomplished with changeSdrerateFinalindices

CacheBlock Clustering GenerateFinallndices

static int GenerateFinallndices(
Finallndices **indices, /I Pointer to index array address.
int NewLength /I New length to support (1<<N).)

/I Prepare to bit - reverse a number of N - 4 bits (see below).
const int shift = 32 - (ilog2(NewLength) - 4);
int kL;

/I Try to allocate space and check result.
Finallndices *p = (Finallndices *)

realloc(*indices, NewLength/16 * sizeof **indices);
if (p == NULL)

return 1;

/I Pass address back to caller.
*indices = p;

/* This routine generates indices for the kL part o f the element
index, which is the index minus the two high bits a nd the two
log bits. This routine is never called with length less than
16, so those four bits are always there to remove.

In addition, we want to cluster the indices by cach e blocks,
so we need to remove another low bit, and therefore another
high bit. This requires that the length be at leas t 64.

For smaller lengths, all the elements do not form a whole
cluster, so we will generate those indices with sep arate code.
*/

/l Handle small sizes.
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if (NewLength < 64)
*(p++) = Construct(0, 0); /1 (0, 0) for lengths 16 and 32.
if (16 < NewLength)
*(p++) = Construct(1, 1); /1 (1, 1) for length 32.
}
/I Do other sizes, with whole clusters of cache blo cks.
else
{ . .
/I Provide names for high bit of zero (h0) and one (h1).
const unsigned int hO = 0, h1 = rw(1) >> shift;
/I Iterate through all values of kL excluding high bit and low bit.
for (kL = 0; KL < NewlLength/16/2; kKL += 2)
{
/I rw(kL) reverses kL as a 32 - bit number. To getitas
/I the reversal of an N - 4 bit number, shift right to
/[ remove 32 - (N-4) bits.
const int kLprime = rw(kL) >> shift;
/I'If kLprime < kL, then kL in a previous iteration had the
// value kLprime has now, and we do not want to repeat it.
if (KL <= kLprime)
/I Use shorter names for forward kL (F) and reverse kL (R).
const unsigned int F = kL, R = kLprime;
/* To convince yourself the following code is corre ct,
first check that each pair of addresses are bit - reversals
of each other (hO|R|1 is paired with h1|F|0, and so on).
Next, in the kL != kLprime case, check that each en try
is preceded or followed by its reversal (a pair wit h
a write to h1|R|0 is adjacent to a pair with a read
from h1|R|0, and so on).
Finally, in the kL == kLprime case, check that each of
the four executed entries either is its own reversa I
(hO|F|0 equals hO|R|0 when F == R) or its preceded or
followed by its reversal (same as kL != kLprime cas e).
*/
*(p++) = Construct( hO|F|0, hO|R|O );
if (KL !'= kLprime)
{
*(p++) = Construct( hO|R|0, hO|F|0 );
*(p++) = Construct( h1|F|0, hO|R|1);
*(p++) = Construct( hO|R|1, h1|F|0);
*(p++) = Construct( h1|F|1, h1|R|1);
}
*(p++) = Construct( h1|R|1, h1|F|1);
*(p++) = Construct( hO|F|1, h1|R|O);
*(p++) = Construct( h1|R|O, hO|F|1);
}
}
}
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return O;

}

In addition to cluster fingbass processing by cache blocks, cache control operations can
be inserted into a variant 6FT4_Final . This may speed up performance by flushing
data soon after we are done writing it. This releases the urtheadee blocks, ensuring
those blocks will be reused first and avoiding the possibility the gsocavill select for
replacement blocks containing data that is still needed.

7.5 Structuring the Multiple -Stage FFT

In section 3.2, we chose valuesngfbased on our target praser architecture. To solve
cache problems, we consider valuesngbased on our cache architecture. Instead of the
term “passes” used in the initial kernel, | use the terngé&stain describing the ouwdf-
cache FFT. Mathematically, stages and passes are idexiegit that we generally use
larger values oin for stages.

In each stage, we will perform radX™ butterflies. Those butterflies will in turn be
composed of butterflies using the existing butterfly routines. Teedtage will be per-
formed using a first pass &FT4_0Oweights or FFT8_O0Weights followed by passes of
radix-4 butterflies. In every other stage, only radibutterflies will be used. Thusy,
must be even for every stage after the first, apdnust be even or odd according to
whetherN is even or odd. Alsayny must be at least 2 (the smallesavailable in an im-
plemented butterfly routine), although we will never want to use a value this low.

In the first stagem must be not greater than l@ig), so that the data for one butterfly fits
in the buffer described in section 78 might be smaller écause completely packing the
buffer with the data for one butterfly means that input elementisetdutterfly will be
adjacent in memory, and then it is difficult to access them With/ec instructions.
There is even some ga®n whether log(b)-2 is too high form, as then we must use
FFT4_1WeightPerlteration for some of the computation with the buffer rather than
FFT4_1WeightPerCall . For this design, | choose to limm to log(b)-4. (See also sec-
tions 7.5.2 and 7.6.1.3.)

After the first stage, it is possible to perform additiortabes using the gathecatter
technique. Such stages would also have their values ainstrained by logb). Such
stages are not needed except for FFTs on extraordinarily lotgyvend are not exam-
ined in this paper.

The penultimate stage is flexible, but the final stage haseseeastraints, so | will dis-
cuss the last stage and then return to the perailt stage.

In the last stage, we wish to do the-ftaversal permutation. The b#versal wreaks
havoc with cache. Cache and bus performance are generally enhgrszgliential ac-
cess. Bus performance may be hindered bysemuential access, and cache performance
is hindered byapeated access to more than eight addresses differing only rirhitei
bits. However, while doing a breversal permutation, accessing eight consecutive ele-

2.1, August 8, 2004 57



Construction of a High-Performance FFT

ments in one place causes necessitates accesses to egghnhtfaces that map to the
same cache set. Any more overflow a cache set and cause thrashing.

In section 7.4, | discussed clustering elements in cache blocksallland imaginary
components are stored separately and arelgter floatingpoint numbers, there are
eight components in one cache block. The cluster of butterflies teedad eight such
cache blocks and write results to eight other cache blockisg(aeversed addresses), in-
termingled with also reading the latter blocks and writingfdineer blocks. Fortunately,
the cache associativity is eight and the former and latbekblare usually (not always!)
mapped to different cache sets.

This means eight elements strain the cache associatsviigr as it will go. To do two
radix-4 passes, we would need 16 elements. Therefera, Final is the only butterfly
operation we can put in the final stage without breaking it. Thé gimss is the final sta-
ge, some1=2. With three stage®, is 3, some.;=m,=2.

Given a first stage with sonmg, and a last stage witlp,=2, the penultimate stage is de-
termined:ny=N-2-mo.

If my is small enough that all the data for at least one raixobutterfly in the penulti-
mate stage fits in cache, then three stages suffice torpetthe FFT with good cache be-
havior in each stage. If not, then more stages are required.

7.5.1 Summary

Summarizing our multipkstage FFT design:

* Mpis odd or even according to whetliers odd or even.

* myis no larger than the cached buffebadlements will permit.

* my may be slightly smaller due to AltiVec inefficiencies wélements located too
closely together.

* myis 2.

* myis whatever is left over.

* my is no larger than the cache will permit.

* My may be zero, a degenerate case indicating the stage is not used.

7.5.2 PowerPC CPU 7400 Design
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Levell cache on the PowerPC CPU 7400 is 32,768 bytes. If our buffer foriggttata

is half of cache, theb is 2048. (2048 complex elements of eight bytes each occupy
16,384 bytes.) Bcause support for butterfly data spaced more closely together than
AltiVec blocks (16 bytes, four einents) will not be included in our implementation of
the firststage of the multipkstage FFTmy must not be greater than {gig/4), which is

9. Somy, could be 9 or 8, according to whether N is odd or even.

However, these values require the us€raf4_1weightPerlteration in the first stage,
as discussed in section 7.6.1.3. We may find values of 7 or GalrkefeThe value afny
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is a flexible part of the FFTedign, easily changed by adjusting a compir assembly
time value, so it can be left for tuning after meaments are made on a target system.

The elements needed for a radi® butterfly have indices2"™ ™k, +k, for
0<k, <2™. In the penultimate stagBl-m-my is 2, so the indices ark#k, and range
from k; to 4(2”‘1 —1)+ K, spanning4(2ml —1) elements. Soﬁl(zml —1) must be not more
than the number of elements that we can have in cache. 4096 eleroefdsfitvbut

would not leave room for weights, gkﬁz’“l —1) must be less than 4096. Thanmust be
less than 10 and even, so it is at most 8.

At the limits,my is 9,my is 8, andm, is 2, soN is 19, and the longest vector for which we
can efficiently compute the DFT on a PowerPC CPU 7400 without ahfetage has
219=524,288 elements. tfy is limited to 7, then the longest vector for which we can effi-
cient compute the DFT ha$2131,072 elements.

7.6 Stage Designs

Now that we have a design for the multigtage FFT, we can design the stages them-
selves. We return to our first FFT kernel, from section 3.1.2

for(p =0;p <P ;++p)
for (kO = 0; kO < 1<<n[p]; ++k0)
FFT_Butterflies(m[p], v[n[p+1]], v[n[p]], kO, 1<<N - n[p]);

We have two or three stages, so we can unroll the lopp on

for (kO = 0; kO < 1<<n[0]; ++k0)

FFT_Butterflies(m[0], v[n[1]], v[n[0]], kO, 1<<N - n[0]);
if (0 <m[1])
for (kO = 0; kO < 1<<n[1]; ++k0)

FFT_Butterflies(m[1], v[n[2]], v[n[1]], kO, 1<<N - n[1]);

for (kO = 0; kO < 1<<n[2]; ++k0)
FFT_Butterflies(m[2], v[n[3]], v[n[2]], kO, 1<<N - n[2]);

Let mo have the value afy. Sincem, is N-2-my, My is 2,ng is 0,Ny IS My, andn, is N-2,
and the codedzomes:

for(k0=0;k0<1 ;++k0)
FFT_Butterflies(mO0, vOut, vin, kO, 1<<N);

if (0<N -2- m0)
for (kO = 0; kO < 1<<m0 ; ++k0)
FFT_Butterflies(N -2- mO, vOut, vOut, k0O, 1<<N - mO0);

for (kO = 0; kO < 1<<N - 2; ++k0)
FFT_Butterflies(2, vOut, vOut, k0, 4);
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The first loop has only one iteration:

FFT_Butterflies(mO0, vOut, vin, 0, 1<<N);

if O<N -2- mO0)
for (kO = 0; kO < 1<<mO ; ++k0)
FFT_Butterflies(N -2- mO, vOut, vOut, k0, 1<<N - m0);

for (k0 = 0; kO < 1<<N - 2; ++k0)
FFT_Butterflies(2, vOut, vOut, kO, 4);

We will write new routines to perform each section in the above code:

FFT_FirstStage(mO, vOut, vin, 1<<N);

if (O<N -2- m0)
FFT_PenultimateStage(vOut, mO0, N);

FFT_FinalStage(vOut, 1<<N - 2);

Actually, the new routines will need prepared constants to compute efficiently:

Multiple -Stage Kernel
FFT_FirstStage(mO0, vOut, vin, 1<<N, weights);

if O<N -2- mO0)
FFT_PenultimateStage(vOut, m0, N, weights);

FFT_FinalStage(vOut, 1<<N - 2, finallndices, finalWeights);

7.6.1 First Stage
When called via:

| FFT_FirstStage(mO0, vOut, vin, 1<<N, weights);

FFT_FirstStage ~ must perform the calculations defined by:

FFT_FirstStage Prototype
| FFT_Butterflies(mO, vOut, vin, 0, 1<<N); |

wheremo andN are large. To do this efficiently, we will create a newcggization of
FFT_Butterflies for this situation. We will gather data into a buffer, calailsbdme
butterflies, and scatter the data back to a data array.

7.6.1.1 Gather and Scatter
Here are subroutines to gather the data into a buffer and sthtiek to an array. To get
the 2" elements needed for all the valueskefin a butterfly, we iterate1 through each
value. To get all the data for a sfer, we iterate on. Data is gathered from spreagdart
locations in the data array (usingrkl ) and collected in closegether locations in the
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buffer (wsing cluster*kl ). At each location, sequential data is copied by iterating
Each time these routines are called, the caller passeseenifivalue ok2, using it to
step through the data array.

Gather
static void Gather(
ComplexArray destination, /I Destination of copying.
ComplexArray source, /I Source of copying.
intul, /I Upper limit on k1, equals 1<<m.
intcl, /I Coefficient for k1.
int k2, /I Current value of k2.
int cluster /l Butterfly sets per cluster.
)
{
int k1, c;
for (k1=0;kl <ul ;++kl)
for (c =0; ¢ <cluster; ++c)
destination[cluster*k1 + c] = source[c1*k1 + k2+c];
}
Scatter
static void Scatter(
ComplexArray destination, /I Destination of copying.
ComplexArray source, /I Source of copying.
intul, /I Upper limit on k1, equals 1<<m.
intcl, /I Coefficient for k1.
int k2, /I Current value of k2.
int cluster // Butterfly sets per cluster.
)
{
int k1, c;
for (k1=0;kl <ul ;++kl)
for (c =0; ¢ <cluster; ++c)
destination[c1*k1 + k2+c] = source[cluster*kl + c];
}

7.6.1.2 Calculating Butterflies
Here is a first version afFT_FirstStage

First FFT FirstStage

static void FFT_FirstStage(
int m, /l'log2 of butterfly radix.
ComplexArray vOut, /I Address of output vector.
ComplexArray vin, /I Address of input vector.
int cO, /I Coefficient for cO.
const CommonWeight weights] /I Array of weight values.

)

{
/I Coefficient for k1 is coefficient for cO divided by 1<<m.
constintcl =c0 >>m;
constint ul = 1<<m;
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/I Cluster size is how many sets fit in buffer at o ne time.
const int cluster = b >>m;

int k2;

/I Process values of k2 in clusters.
for (k2 = 0; k2 < c1; k2 += cluster)

Gather(buffer, vin, ul, cl1, k2, cluster);
FFT_Butterflies(m, buffer, buffer, 0, b);
Scatter(vOut, buffer, ul, c1, k2, cluster);

}

}

The code is simple enough, but whybipassed t&FT_Butterfies ~ ? That formal ar-
gument isco, the coefficient foko, which is 2" in the mathematics. In this initial pass,
nis 0, so we would mrnally pass 2, or 1<<N.

In FFT_Butterflies , c1 is derived from the formal argumeetd (actual argumend),
andc1 is used in two ways. It is the coefficient far, used to locate elements in the ar-
ray, and it is the pper bound of the loop a2, so it specifies the number of iterations for
k2.

In both cases, the normal value «af would not work. First, we have movecdelents
from their original locations; they are at different indicesfier . Second, we have
gathered onlyluster  sets of data, not all of them.

We can see that passing as the actual argument satisfies both purposes.
FFT_Butterflies calculates ¢1 = c0 >>m ”. Having been passedfor c0, this gives
b>>m, which equalgluster . As we can see from th&ther code,cluster is both the
coefficient fork1 used to place elements in the buffer and the number of sets of data.

As written, this code requires thaister dividecl, so thak2 ends at exactlyl after a
whole number of clustersluster s b>>m, SOb>>m must dividec1, which means must
divide c1<<m. c1 is c0>>m, and the formal argument is passed<<N as the actual ar-
gument (in section 7.6), si® must dividei<<N. Since1<<N is a power of two, this
amounts to saying must be a power of two. This restriction may be lifted by sejpay
a final iteration from the loop to handle a partial cluster. Sutio@fication would have
to be propagated to the more efficient code below. That is not shown in this paper.

Another constraint on is that it must be a multiple ak<m. b is divided byl<<m to set
cluster , and then each call teather gathers data fatluster  butterflies, so it gathers
cluster<<m  elements. Ifb is a multiple ofi<<m, thencluster<<m is b. If not, only
cluster<<m elements are gathered, anduster<<m should be passed to
FFT_Butterflies in lieu of b. This is the same as reducindo the nearest multiple of
I<<m.
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7.6.1.3 Specializing the Butterflies
FFT FirstStage  contains a call t6FT_Butterflies

| FFT_Butterflies(m, buffer, buffer, 0, b); |

This should be replaced with a specialization optimized for thistgin. Observe that
this call transforms the contents lafffer from vp to v, We already have optimized
code that does this. The first sets of loops in the FFT kermsforanvg (in vin)  to Vo,

(in vout) . We can take this code from the kernel:

if (N & 1)

FFT8_0Weights(vOut, vin, 1<<N);
else

FFT4_0Weights(vOut, vin, 1<<N);

nLower = N&1 ? 3: 2;

for (n=nLower;n <N -4 ;n+=2 )
FFT4_O0Weights(vOut, vOut, 1<<N - n);

for(k0=1 ;nLower<N -4 ;nLower +=2)

for ( ; kO < 1<<nLower; ++k0 )

for (n =nLower;n <N -4 ;n+=2 )
FFT4_1WeightPerCall(vOut, kO, 1<<N - n, weights[kO0]);

and make appropriate substitutions. To know what substitutions to makss, leview
the code. This code:

* reads fromvin and writes taOut ,

* evaluatesn & 1 to decide whether radi® or radix4 is used first,

e usesN-4 in various loop tests to limit to N-4 (thus yieldingvn.4), and

* passed<<N andi<<N-n for theco argument, which is used for element spacing
and loop couting.

To use this code for our new purpose, we will make the following substitutions.

* We want to operate on the data in bufferylso andvout becomebuffer

*  We will start with radix8 or radix4 according to whether the formal argument
is odd or even, sk &1 becomesné&1 .

* We want to calculate,, rather tharvy.4, So the loop limits change from4 tom

» The vector has lengthinstead ofi<<N, so1<<N become®, andi<<N-n becomes
b>>n.

This yields:

if (m & 1)
FFT8_ 0Weights(buffer, buffer, b);
else
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FFT4_O0Weights(buffer, buffer, b);

nLower =m&1 ? 3: 2;
for (n=nLower;n <m n+=2
FFT4_O0Weights(buffer, buffer, b>>n);

for(k0=1 ;nLower<m ; nLower += 2)
for ( ; kO < 1<<nLower; ++k0 )
for (n=nLower;n <m n+=2

FFT4_1WeightPerCall(buffer, kO, b>>n, weights[k0]);

Note that if b>>n reaches 16, the final loop om is better done with a call to
FFT4_1WeightPerlteration (which is specialized for this case) than with a loop calling
FFT4_1WeightPerCall . This design, while it will calculate correct result®itn is 16,

is not the most efficient in that case. In the current desighydhitine will not be called
on to do thisn reaches the value-2, andmis passed the valueo, sob>>n reaches

b>>m0-2 . We will selecth andmy to keepb/2™ above 16.

7.6.1.4 Finished Routine
Putting the new code into the routine gives:

FFT _FirstStage

static void FFT_FirstStage(

int m, /l'log2 of butterfly radix.
ComplexArray vOut, /I Address of output vector.
ComplexArray vin, /I Address of input vector.
int cO, /I Coefficient for cO.
const CommonWeight weights] /I Array of weight values.

)

{
/I Coefficient for k1 is coefficient for cO divided by 1<<m.

const int cl =c0 >>m;
constintul = 1<<m;

const int cluster = b >>m;
int n, nLower, k, kO, k2;

/I Process values of k2 in clusters.
for (k2 = 0; k2 < c1; k2 += cluster)

{
Gather(buffer, vin, ul, cl1, k2, cluster);

if (m & 1)

FFT8_ 0Weights(buffer, buffer, b);
else

FFT4_0Weights(buffer, buffer, b);

nLower =m&1? 3: 2;
for(n=nLower;n <m n+=2 )
FFT4_O0Weights(buffer, buffer, b>>n);

/I Cluster size is how many sets fit in buffer at o ne time.
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for(k0=1 ;nLower<m ; nLower += 2)
for ( :kO < 1l<<nLower; ++k0 )
for (n=nLower;n <m in+=2 )

FFT4_1WeightPerCall(buffer, kO, b>>n, weights[kO0]);

Scatter(vOut, buffer, ul, c1, k2, cluster);

}

7.6.2 General Stages
If an FFT is being performed on a very long vector, more thae steges are required.
(See the end of section 7.5.) After the first stage, the inponeeits to butterflies are still
far apart and must still be gathered together. However, theic@d&_FirstStage  can-
not be used as is, as it is structuredrfe®. The code iIlFFT_PenultimateStage  , below,
is structured for general, but it does not gather and scatter data. To support high
performance with very long vectors, another stage would have to be designed.

A routine implementing such a stage would suffice to handle vect@syolength, as it
could be used as many times as necessary to process any ofmbermediate stages.
However, such a routine is not discussed in thep

For the reader who would design such a routine, note that an arguomanst be added
to theGather andsScatter routines. The routines in section 7.6.1.1 implicitly hieve0,
since they are used only in the first stage.

7.6.3 Penultimate Stage

In the penultimate staga,is large, so 2"™ is small, and the cache set size is not a prob-
lem. This means we do not need the gasivatter technique used in the first stage. How-
ever, cache size is still a problem, so the penultimate stageomdsne in sets of butter-
fly operations that can each be performed in cache.

When called via:

| FFT_PenultimateStage(vOut, m0, N, weights);

FFT_PenultimateStage ~ must perform the calculations defined by:

FFT_PenultimateStagePrototype
for (kO = 0; kO < 1<<m0 ; ++k0)
FFT_Butterflies(N - m0 2, vOut, vOut, kO, 1<<N - m0);

This code computeg,., from Vi, - Another way to computey., from Vi s given thatN-
2-my IS even, is:

for(n=m0; n<N -2;n+=2)
for (kO = 0; kO < 1<<n; ++k0)
FFT_Butterflies(2, vOut, vOut, kO, 1<<N - n);
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That is, computer, for n= my+2, my+4, Mmp+6,..., N-2, w
form the previous one in this sequence by radbutterfli

here eaclv, being computed
es. (For a reminder about this

loop structure, compare this code to the first FFT kernel in se®tioB.) To be general, |
will replace the actual argumenid with a formal argumeniStage , representing the

value ofn for whichvy is input to the stage.

The inner loop can be partitioned into groups of iterati

ons suchlthiae anput data for

each group fits in cache. Lgtbe the number of elements used in a group of iterations.
Generallyg should be as large as it can be without excluding other data, suahights,

from cacheg might or might not be the samegshe nu
used in the first stage.

mber of elements in the buffer

If g divides1<<N, then the code to process the butterflies in groups is:

for (n =nStage; n <N )
for(k =0 ;k <1<<N ' k+=0)
for (k0 = k>>N - n; kO < (k+g)>>N -n; ++k0 )

FFT_Butterflies(2, vOut, vOut, k0O, 1<<N

yn+=2)

- n);

We could also write code that works for any valug:of

for (n =nStage; n<N -2;n+=2)

/I Do whole groups up to last.

for(k =0 ;k <(1<<N) -g ;k+=0q)

for (kO = k>>N - n; kO < (k+g)>>N -n; ++k0 )
FFT_Butterflies(2, vOut, vOut, k0O, 1<<N

/I Do last group, whether partial or whole.
for (kO = k>>N -n;k0O<1<<n ;++k0 )
FFT_Butterflies(2, vOut, vOut, kO, 1<<N

}

-n);

- n),

By removing the constraint, the latter code may allow

use afgeellg, and that may im-

prove performance by grouping bus transactions into longer sequentaatas. For sim-

plicity, I will use the former code.

We have now grouped the butterflies within each iteration b that the data of the
group fits in cache, but, in one iterationrgmmany such groups are processed. As multi-
ple iterations om are executed, the data must be reloaded into cache as each dpeup is
gun. Fortunatelyk andn are independent, so we can easily swap the order of their loops:

for(k =0 ;k <1<<N ;k+=9)

for (n =nStage; n <N -2 ;n+=2)

for (kO = k>>N - n; kO < (k+g)>>N - n; ++k0 )
FFT_Butterflies(2, vOut, vOut, k0O, 1<<N

- n),

Now we have partitioned all the butterflies in the penultiméagesinto groups whose
data fits in cache, and we iterate through the groups only oheeefdre, this design for

66
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the penultimate stage will read each element from memorycatbe exactly once and
write an element from cache to memory exactly once (assumoiegternal factors inter-
fere with cache operations and that the stage starts andefingith no elements in
cache).

Cache control operations could be inserted before each iteratiotoaead the data that
will be needed for the iteration and after each iteration ite wiata from cache to mem-
ory and make room in cache for new data.

Within this design, we can still reorganize the calculations danputational efficiency,
without affecting the cache grouping. As with the FFT kernel, the penultpaateis best
performed by specialized code. The penultimate pass of the RR& fmal pass of this
stage. So, within the loop k) we separate the last iterationron

for (k = 0; k < 1<<N; k +=@)

for (n =nStage; n <N -4 ;n+=2)
for (kO = k>>N - n; kO < (k+g)>>N -n; ++k0 )
FFT_Butterflies(2, vOut, vOut, k0O, 1<<N - n);

for (kO = k>>4 ; k0O < (k+g)>>4 ; ++k0 )
FFT_Butterflies(2, vOut, vOut, k0, 16);
}

Note that the original feloop on n performs this last iteration only if £ N -2 ” evalu-
ates to true. This occursriftage <N -2, which is true if there is any work for the rou-
tine to do at all. Our design calsT_PenultimateStage ~ only if there is work for it, that
is, if 0 <N -2- m0. So we can omit the tesi < N -2 " in this code.

In the FFT kernel, we found it useful to reorder the loops to grouprtieteby weight.
That is possible here in the first iterationigrwhenk is 0, so we will separate that itera-
tion. In the other iterations ok, weights are not used repeatedly in different passes.
(Compare the upper bound km whenn is n to the lower bound oko in the next pass,
whenn is n+2: (k+g)>>N - n versusk>>N-( n+2) . If k is at least), as it is after the first it-
eration, the latter is at least twice the formerk&always begins a new loop at a higher
value than it ended the previous loop.) The new code with the firaticteronk sepa-
rated is:

Early FFT_PenultimateStage

for (n =nStage; n <N -4 ;n+=2)
for(k0=0 ;kO<g>>N -n; ++k0 )
FFT_Butterflies(2, vOut, vOut, k0O, 1<<N - n);

for(k0=0 ;kO<g>>4 ;++k0 )
FFT_Butterflies(2, vOut, vOut, k0, 16);

for (k =g; k <1<<N; k +=Q)

for (n =nStage; n <N -4 ‘n+=2)
for (k0 = k>>N - n; kO < (k+g)>>N -n; ++k0 )
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FFT_Butterflies(2, vOut, vOut, kO, 1<<N - n);
for (kO = k>>4 ; kO < (k+g)>>4 ; ++k0 )
FFT_Butterflies(2, vOut, vOut, k0, 16);
}
The loop:
for (kO = 0; kO < g>>4; ++k0)
FFT_Butterflies(2, vOut, vOut, k0, 16);
is equivalent to:
| FFT4_1WeightPerlteration(vOut, g>>4, weights);
However, the loop:
for (kO = k>>4; kO < (k+g)>>4 ; ++k0)
FFT_Butterflies(2, vOut, vOut, k0, 16);
cannot be directly computed wiHFT4_1WeightPerlteration , because it does not start
ko at 0. We need a variation BFT4_1WeightPerlteration that takes both lower and
upper bounds:
| FFT4_1WeightPerlterationB(vOut, k>>4, (k+g)>>4, wei ghts); |
The reader can see by inspecti#rRy4_1WeightPerlteration in section 4.3.4 that the

following is an implementation ¢fFT4_1weightPerlterationB

FFT4 1WeightPerlterationB

static void FFT4_1WeightPerlterationB(
ComplexArray vOut,
int 10,
int uo,
const CommonWeight weights]
)
{

}

FFT4_1WeightPerlteration(vOut + (10<<4), u0 - 10, weights + 10);

/I Address of output vector.
/I Lower bound on kO.

/I Upper bound on kO.

/I Array of weight values.

Now our secongtage code becomes:

for (n =nStage; n <N -4 ;n+=2)
for (k0 =0 ; kO < g>>N -n; ++k0 )
FFT_Butterflies(2, vOut, vOut, kO, 1<<N

for (k =g; k <1<<N; k +=Q)
{

FFT4_1WeightPerlteration(vOut, g>>4, weights);
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for (n =nStage; n <N -4 ;n+=2)
for (kO = k>>N - n; kO < (k+g)>>N -n; ++k0 )
FFT_Butterflies(2, vOut, vOut, kO, 1<<N - n);

FFT4_1WeightPerlterationB(vOut, k>>4, (k+g)>>4, wei ghts);

The two calls tarFT_Buitterflies are efficiently computed byFT4_1weightPerCall
so we will replace them:

for (n =nStage; n <N -4 ;n+=2)
for (k0 =0 ; kO < g>>N -n; ++k0 )
FFT4_1WeightPerCall(vOut, kO, 1<<N - n, weights[kO0]);

FFT4_1WeightPerlteration(vOut, g>>4, weights);
for (k =g; k< 1<<N; k +=Q)
for (n =nStage; n <N -4 ;n+=2)
for (kO = k>>N - n; kO < (k+g)>>N -n; ++k0 )
FFT4_1WeightPerCall(vOut, kO, 1<<N - n, weights[kO0]);

FFT4_1WeightPerlterationB(vOut, k>>4, (k+g)>>4, wei ghts);

}

Finally, we wish to change the orders of the first two loops separate thi,=0 itera-
tion, as we did in the FFT kernel. The derivations are the saffoe te kernel, so they
are left as an exeise for the reader. The only change in the resulting cotiatisLbwer

is initialized tonstage instead of N&1:3:2 7 (each value is the startingin the re-
spective FFT structure) and the loop bound®ns changed from<<nLower to g>>N-
nLower . The new code is:

FFT_PenultimateStage
static void FFT_PenultimateStage(

ComplexArray vOut, /I Address of output vector.
int nStage, /I n at start of stage.

int N, /I'N.

const CommonWeight weights] /I Array of weight values.

int n, nLower, k, kO;

nLower = nStage;

for (n=nLower;n <N -4 yn+=2 )
FFT4_0Weights(vOut, vOut, 1<<N - n);

for(k0=1 ;nLower<N -4 ; nLower += 2)

for ( ; kO < g>>N - nLower; ++k0 )

for (n =nLower;n <N -4 yn+=2 )
FFT4_1WeightPerCall(vOut, kO, 1<<N - n, weights[kO0]);

FFT4_1WeightPerlteration(vOut, g>>4, weights);
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for (k=0; k< 1<<N; k +=g)

{
for (n =nStage; n <N -4 ;N +=2)
for (kO = k>>N - n; kO < (k+g)>>N - n; ++k0 )

FFT4_1WeightPerCall(vOut, kO, 1<<N - n, weights[kO0]);

FFT4_1WeightPerlterationB(vOut, k>>4, (k+g)>>4, wei ghts);

}

}

7.6.4 Final Stage
When called via:

| FFT_FinalStage(vOut, 1<<N - 2, finalindices, finalWeights);

FFT_FinalStage = must perform the calculations defined by:

FFT_FinalStage Prototype
for (k0 = 0; kO < 1<<N - 2; ++k0)
FFT_Butterflies(2, vOut, vOut, k0, 4);

and it must perform the breversal permutation. This is identical to the function that
FFT4_Final was created to implement efficiently, Bor_FinalStage  could be:

FFT_ FinalStage
static void FFT_FinalStage(

ComplexArray vOut, /I Address of output vector.
int uo, /I Upper bound on kO.

const Finallndices IndexTable[], // Array of index pairs.
const FinalWeights weights] /I Array of weight values.

)
{

}

FFT4_Final(vOut, u0, IndexTable, weights);

However,FFT_FinalStage has to operate on data that does not all fit in cache simulta-
neously, and thus we may want to implement it as a new vari@mrofrinal that in-
cludes cacheontrol operations.

It was mentioned in section 6.4 that the data rearrangement needéeé final butter-
flies meshes nicely with the data rearrangement of theebgtrsal pemutation. There is

an additional advantage in the -itcache FFT because the butterfly operations are
largely calculations and intraregister data movement, while threx®stsal permutation is
largely memory reading and writing, so they can execute simultaneously.

7.7 Cache Operations

Previous sections show an FFT algorithm design that organizegotkein a way suit-
able for the cache architecture, primarily by arrangingd@ata to be operated on in
groups small enough to fit in cache. The fact that the data ceeatidnto cache, kept
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there, and wtten to memory in an efficient manner does not mean that the pooced
do so. We may need to direct the processor in these actiwtiesing explicit cache op-
erations.

Because the usefulness of cache operationgtialpadependent on L2 and memory bus
speeds and characteristics, this paper only lists potential parfoenenhancements from
cache operations that might exist and does not give atdedidesign.

Also, L2 cache control on the Motorola PowerPC CPU7400 and some otiéecAlt
processors is imperfect and does not provide all the operations we would desire.

In addition, the benefits of various operations will vary at diffengrdtor lengths. A
complete design for best performance at every length thenefquéres tailoring cache
operations to each length.

7.7.1 Cache Operations

AltiVec processors offer a variety of cache operations. Thelsleta beyond the scope
of this paper. The operations may be categorized:

» Load. Data is loaded into cache in advance of its use in a computation.

» Allocate. Blocks are created in cache with zero or undefined data witbading
from memory.

 Mark. Data is marked mosbr leastrecentlyused to influence the prassor’'s
choice of blocks to remove from cache when bringing in new blocks.

» Store. Data is written from cache to memory (if it has been modified in cache).

» Remove.Data is removed from cache.

Cache operations will be discussed in these terms without addreasiagts. For exam-
ple, the 7400 has separate methods to load data intended only for remtlindaad data
intended for reading and writing. Another example is that therenatructions to store
data without removing itd¢bst ), to store data and remove dtiff ), and to emove data
without storing it {cbi ). In the former example, the choice is determined by the isituat
and is obvious. In the latter case, the specific instruction usedimpementation de-
tail—the categories given above describe the operation sufficiently.

7.7.2 Allocate Buffer in Cache

The gathering step will copy data to a buffer in cache. Bec#he existing contents of
the buffer will be completely overwritten, there is no need to read them fronompiem

On the Motorola PowerPC CPU 7400, quickly issuing store instructionhéltleacache

block results in the processor gathering all the stores togetdewsdting the resulting
block to cache. (This stoigathering is unrelated to the data gathering of our F§a- al
rithm.) If this does not occur, only part of a cache block istewritThe emainder of the

block must come from memory, and so reads from memory are pedoFoehigh per-

formance, these reads should be avoided.
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On processors like the 7400, stgahering usually provides the desired behavior. If it
does not (the program does not issue store instructions sufficientkly) or on other
processors, the buffer may be allocated in cache, to avoid readiogmimemory. This
step can be done onceftre the first gather operation and need not be repeated if the
buffer is kept in cache.

7.7.3 Load Data Being Gathered

In step (1), when data is being gathered, it may be useful tontadache parts of the
data array shortly before they are read. This may also be wsagcas the copying is
limited by the rate at which data can be read from mepag there is little other work
to do while waiting for data to arrive.

7.7.4 Remove Data After Gathering

After data has been read from the array and written to a biifeecache blocks with im-
ages of the array are not needed for calculations and can belddsc@ne might think
these blocks will be needed again soon, when the scattering is dapy tine data from
the buffer back to the array. However:

* The blocks generally do not remain in cache, due to the cats&segroblem,
which is the reason we are gathering data.

* There is no advantage in having the blocks in cache because whentevéha/
results, they can be written to memory without reading the egisbntents (us-
ing either storgyathering or another means, depending on the processor).

» Keeping the blocks in cache may result in other data being@etset cache, such
as parts of the buffer used early in the gathering or parts of the table bfsveig

Thus, there may be an advantage to discarded the data aftezatlj either by exlily
removing it or by marking it leasecentlyused.

7.7.5 Write Results Without Reading

When the firststage results are copied from the buffer back to the arraysghe about
writing entire cache blocks exists. Again, stgeghering or another method should pre-
vent unnecessary reads.

7.7.6 Remove Data After Scattering

After results have been copied from the buffer back to the atray,will not be used
again in the first stage, so they could be removed from cacheaugoythey will be used
again in subsequent stages.

7.7.7 Remove Buffer

When the first stage is done, the buffer contains results fromaghset of butterflies. If
we go on and do other work, the processor will eventually recogfmedata in cache
has not been used and will select it for removal. To remove tlaefaenh cache, the
processor will write it to memory. We do not want that to occuravad it, we could

remove the buffer.
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7.7.8 Penultimate Stage

The penultimate stage might benefit from loading the data of eaap gefore it is used,
loading the weights used by each group of data before thaysade and either storing
and removing the data after each group is done or marking the dateeteadtyused.

The weights could also be removed. However, some weights are yisecrd than one
group in the penultimate stage, so we would wish to remove only weightwill not be
used again, or perhaps to refrain from removing weights until the end of the stage.

7.7.9 Final Stage
The final stage is driven by a table of indices as is notlyeadienable to cache opera-
tions. Because the table entries are-sequential, it is not possible to usefully issue se-
guential load operations for the data in final stage. Some attempt lseuhade to read
the table ahead of loading the data and issue individual loads.

The weights are read sequentially, since the weight tablepmmd to match the index
table, so weights could be loaded in advance.

After being used, results and weights could be removed from cachmréied least
recentlyused.

7.7.10 After the FFT

When the FFT is complete, the application using it will go on to dtiags, and the
FFT may be able to enhance performance by leaving the caclstaite aiseful to the ap-
plication. Because the last operation in the FFT is thesegnential final pass with bit
reversal, there is not a good description of what remains in cache.

If the memory bus in use performs sequential accesses nimengy than non
sequential accesses, it may be useful to ensure that castbeerd after completion of an
FFT on a long vector. Then, when the application goes on to other worky itbad data
sequentially and benefit from the faster execution of sequentiabses. If modified data
were left in cache by the FFT, the reading of new data wowie toabe interleaved with
the writing of FFT results, resulting in neequential accesses on the memory bus.

8 Reverse DFT

The reversOFT of a 2'-element vectoH is the vectoh:
_ Ik

21 27”H]. forO<k <2V,

o<j<2N

1

N

h, =
Some algebra will show that the reveBET is the inverse of the DFT, that the reverse
DFT of the DFT ot ish.

The original DFT may be called the forwebdFT.
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Aside from swappindd andh, the definition of the reverdeFT differs from the defini-
tion of the DFT in two ways: The exponent is negated and all seatdt mttiplied by

1N,

8.1 Conjugating Elements

74

Let V" denote the vector formed by exchanging the real and imagiuanponents of
each element of a vectdt. That is, ifVi=a+bi, thenV =b+ai. Let DFT{/) denote the
DFT of a vectolV. Thenh=(DFT(1/2" - H)". In other words, we can gierm a reverse
DFT by exchanging the real and imaginary components of a wectoultiplying the re-
sult by 1/2', taking the DFT, and exchanging the real and imaginary coems again.

To see that this is so, observe thatai =i(a—bi)=i(a+bi), wherea+bi denotes the

complex conjugate oé+bi. That is, swapping the real and i[n*aginarynponents is
equivalent to conjugating and multiplying byThen (DFT(1/2 - H')  is:

iDFTEL iH
3

Elementk of this vector is:

ik

. PO e P R o 1:-==
[ 127 —iH, =i 127 —iH, =i 127 —iH,
OstZN oN j 05122” N j 05122” oN j
L] 1 _k 1 -k
:. 12N_—'H_:._—. 12NH:_ 12NH_'
|0sz<2N 2N ( I) i | 2N ( I)OS]‘ZQN j 2N OstZN j

Thus elemenk of (DFT(1/2" - H') is indeed elemerk of the revers®FT of H. Thus,
we can compute a reverBdT using a DFT if we implement two additional things: ex-
changwing the real and imaginary components before and aft€&Hheand multiplying
by 1/2°.

If arrays of complex numbers are implemented with two pointeesrays, one for the
real components and one for the imaginary components, then exchangiogn@nents
in each element dfl is implemented simply by exchanging the two pointers.

If arrays of complex numbers are implemented as arrays f pareal and imaginary
components, then the data must actually be exchanged before andtheafdTt. This
need not involve any additional work. An alternate versionFef4_Oweights oOr
FFT8_0_Weights can exchange the components as it loads them, and an altersaie ve
of FFT4_Final can exchange the components as it stores them.

The former is used in the demonstration code. The latter iy @aplemented, although
it requires duplicate some amount of code.
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8.2 Scaling in the Butterfly Routines

This leaves the matter of multiplying the data by™1/Rur choices for this are quite
flexible. The DFT is linear, so the multiplications can beritesebefore or after the DFT
with the same results. The multiplications can even be inse&te the FFT computa-
tion if done in a consistent manner.

Consider this variant ¢fFT4_0OWeights :

FFT4 O0WeightsScale
static void FFT4_0WeightsScale(

ComplexArray vOut, /I Address of output vector.
ComplexArray vin, /I Address of input vector.
int cO, /I Coefficient for kO.
float scale /I Scale for reverse transform.
)
{
/I Coefficient for k1 is coefficient for kO divided by 1<<m.
constintcl =c0>> 2;
int k2;

float aOr, a0i, alr, ali, a2r, a2i, a3r, a3,
cOr, cO0i, clr, cli, c2r, c2i, c3r, c3i,
dOr, dOi, d1r, d1i, d2r, d2i, d3r, d3i;

for (k2 = 0; k2 < c1; ++k2)
{
aor = vin.re[c1*0 + k2] * scale;
a0i = vin.im[c1*0 + k2] * scale;
alr =vin.re[c1*1 + k2];
ali = vin.im[c1*1 + k2];
a2r = vin.re[c1*2 + k2];
a2i = vin.im[c1*2 + k2];
a3r = vin.re[c1*3 + k2];
a3i = vin.im[c1*3 + k2];
cOr = + a2r * scale + a0r;
c0i = + a2i * scale + a0i;
c2r= - a2r*scale + a0r;
c2i= - a2i*scale + a0i;
clr=+a3r+alr;
cli=+a3i + alj;
c3r= - a3r+alr;
c3i= - a3i+ali
dOr = + c1r * scale + cOr;
dOi = + cli * scale + cOi;

dlr= - clr*scale + cOr;
dli= - cli*scale + c0i;
d2r= - c3i*scale + c2r;

d2i = + c3r * scale + c2i;
d3r =+ c3i * scale + c2r;
d3i= - c3r*scale +c2i;
vOut.re[c1*0 + k2] = dOr;
vOut.im[c1*0 + k2] = dOi;
vOut.re[c1*1 + k2] = d1r;
vOut.im[c1*1 + k2] = d1i;
vOut.re[c1*2 + k2] = d2r;
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vOut.im[c1*2 + k2] = d2i;
vOut.re[c1*3 + k2] = d3r;
vOut.im[c1*3 + k2] = d3;;

}

The intent in this routine is that the caller will pass lif2scale , and the routine will
produce results as if all the input data were multiplieddaye . This could be accom-
plished simply by multiplying each input number dale . However, the above code
takes advantage of the availability of a fused multgadg instruction that will perform a
multiplication and an addition in the same time as an add. All bubtwiee multiplica-
tions have been incorporated into existing additions.

Notice thataor andaoi are multiplied byscale , yielding scaled results. Then, wherever
FFT4_OWeights  originally added an unscaled number to a scaled number,
FFT4_OWeightsScale ~ multiplies the unscaled number by scale as it adds it toctieds
number, yielding a consistent scaled result. By the end of the roallimesults are prop-
erly scaled.

Similar changes can be made RBT8 O0Weights to produceFFT8_0WeightsScale
FFT8_OWeights aready includes multiplications, by a symbol named2d2 , but the
contents of that symbol can be multiplied dayle to get the desired result, as shown
here:

FFT8 OWeightsScale
static void FFT8_0WeightsScale(

ComplexArray vOut, /I Address of output vector.
ComplexArray vin, /I Address of input vector.

int cO, /I Coefficient for kO.

float scale /I Scale for reverse transform.

/l Prepare a constant, sqrt(2)/2, with the scaling incorporated.
const float sqrt2d2 = .7071067811865475244 * scale;
/I Coefficient for k1 is coefficient for kO divided by 1<<m.
constintcl =c0>> 3;
int k2;
float aOr, a0i, alr, ali, a2r, a2i, a3r, a3,

adr, a4i, abr, abi, abr, abi, a7r, a7i,

bOr, b0i, blr, bli, b2r, b2i, b3r, b3i,

b4r, b4i, b5r, b5i, b6r, b6i, b7r, b7i,

cOr, c0i, c1r, cli, c2r, c2i, c3r, c3i,

c4r, c4i, c5r, cbi, cbr, c6i, c7r, c7i,

dOr, d0i, d1r, d1i, d2r, d2i, d3r, d3i,

d4r, d4i, d5r, d5i, d6r, d6i, d7r, d7i,

tor, t5i, t7r, t7i;

for (k2 = 0; k2 < c1; ++k2)
aor = vin.re[c1*0 + k2] * scale;

a0i = vin.im[c1*0 + k2] * scale;
alr = vin.re[c1*1 + k2];
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ali = vin.im[c1*1 + k2];
a2r = vin.re[c1*2 + k2];
a2i = vin.im[c1*2 + k2];
a3r = vin.re[c1*3 + k2];
a3i = vin.im[c1*3 + k2];
adr = vin.re[c1*4 + k2];
adi = vin.im[c1*4 + k2];
a5r = vin.re[c1*5 + k2];
abi = vin.im[c1*5 + k2];
a6r = vin.re[c1*6 + k2];
a6i = vin.im[c1*6 + k2];
a7r = vin.re[c1*7 + k2];
a7i = vin.im[c1*7 + k2];
bOr = aOr + a4r * scale;
bOi = a0i + adi * scale;
blr=alr + abr;

bli = ali + a5i;

b2r = a2r + abr;

b2i = a2i + abi;

b3r =a3r + arr;

b3i = a3i + a7i;

b4r = aOr - adr * scale;
b4i = a0i - adi * scale;
b5r = alr - abr;

b5i = ali - abi;

b6r = a2r - aér;

b6i = a2i - abi;

b7r = a3r - arr;

b7i = a3i - ari;

cOr = bOr + b2r * scale;
c0i = b0i + b2i * scale;
clr=blr + b3r;

cli =bli + b3j;

c2r = bOr - b2r * scale;
c2i = bOi - b2i * scale;
c3r = blr - b3r;

c3i = bii - b3j;

c4r = b4r - b6i * scale;
c4i = b4i + bér * scale;

c5r = bbr - b7i;

c5i = b5i + b7r;

c6r = b4r + b6i * scale;

c6i = b4i - b6r * scale;
c7r = b5r + b7i;

C7i = b5i - b'r;

tor = cbr - c5i;

t5i = c5r + c5i;

t7r = c7r + c7i;

t7i=c7r - Cc7i;

dOr = cOr + c1r * scale;
dOi = c0i + cli * scale;

dir = cOr - clr * scale;
dli = cOi - cli * scale;
d2r =c2r - ¢3i * scale;

d2i = c2i + c3r * scale;
d3r = c2r + c3i * scale;
d3i=c2i - c3r * scale;

/IIw=1.
Tw=1.
Iw=i.
/Tw=1.
I'w=i.
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d4r = + t5r * sqrt2d2 + c4r;
d4i = + t5i * sqrt2d2 + c4i;

d5r= - t5r* sqrt2d2 + c4r;
d5i= - t5i * sqrt2d2 + c4i;
dér= - t7r * sqrt2d2 + cér;

d6i = + t7i * sqrt2d2 + c6i;
d7r = + t7r * sqrt2d2 + cér;
d7i= - t7i*sqrt2d2 + c6i;
vOut.re[c1*0 + k2] = dOr;
vOut.im[c1*0 + k2] = dOi;
vOut.re[c1*1 + k2] = d1r;
vOut.im[c1*1 + k2] = d1i;
vOut.re[c1*2 + k2] = d2r;
vOut.im[c1*2 + k2] = d2i;
vOut.re[c1*3 + k2] = d3r;
vOut.im[c1*3 + k2] = d3;;
vOut.re[c1*4 + k2] = d4r;
vOut.im[c1*4 + k2] = d4i;
vOut.re[c1*5 + k2] = db5r;
vOut.im[c1*5 + k2] = d5i;
vOut.re[c1*6 + k2] = dér;
vOut.im[c1*6 + k2] = d6i;
vOut.re[c1*7 + k2] = d7r;
vOut.im[c1*7 + k2] = d7i;

/1w = sqrt(2)/2 * (+1+i).

/1w = sqrt(2)/2 * ( - 1+).

FFT4_O0WeightsScale

executes two more multiplications th&RAT4_oweights . These

are necessary with this implementation of the revBf#S€. For highest performance with

the DFT, an
FFT4_O0WeightsScale

implementation might either
in assembly language in a way that allows it to avoid ttk-a

USET4_OWeights  or implement

tional time for the unnecessary multiplications when doing a DF€&. sBEme is true of

FFT8 O0WeightsScale

8.3 Changing the Kernels

Having created these variants, it is necessary to use thenkefid changes one last

time:

FFT Kernel with Scaling for Reverse Transform

static void FFT_Kernel(
ComplexArray vOut,
ComplexArray vin,
int N,
int direction,
const CommonWeight *weights,

const float scale = direction ==

int n, nLower, kO;

78

const Finallndices *finallndices,// Index pairs.
const FinalWeights *finalWeights // Final weight va

/I Address of output vector.
/I Address of input vector.
/I'N.

/I Transform direction.

/I Common weight values.

lues.

-1?1.J(1<<N): 1
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if (N&1)

FFT8 O0WeightsScale(vOut, vin, 1<<N, scale);
else

FFT4_0WeightsScale(vOut, vin, 1<<N, scale);

nLower = N&1 ? 3: 2;

for (n=nLower;n <N -4 ;n+=2 )
FFT4_0Weights(vOut, vOut, 1<<N - n);

for(k0=1 ;nLower<N -4 ;nLower +=2)

for ( ; kO < l1<<nLower; ++k0 )

for (n=nLower;n <N -4 ;n+=2 )
FFT4_1WeightPerCall(vOut, kO, 1<<N - n, weights[kO0]);

if(n<N -2)
FFT4_1WeightPerlteration(vOut, 1<<N - 4, weights);

FFT4_Final(vOut, 1<<N - 2, finalindices, finalWeights);

FFT_MultipleStages also changes:

Multiple -Stage Kernel with Scaling for Reverse Transform

static void FFT_MultipleStages(
ComplexArray vOut, /I Address of output vector.
ComplexArray vin, /I Address of input vector.
int N, /I'N.
int direction, /I Transform direction.
const CommonWeight *weights, /I Common weight values.
const Finallndices *finallndices,// Index pairs.
const FinalWeights *finalWeights // Final weight va lues.
)
{
const float scale = direction == -1?1./(1<<N): 1,
intm0=N&17?9:8;
FFT_FirstStage(mO0, vOut, vin, 1<<N, scale, weights) ;
if O<N -2- mO0)
FFT_PenultimateStage(vOut, mO, N, weights);
FFT_FinalStage(vOut, 1<<N - 2, finalindices, finalWeights);
}

The auxiliary routingsFT_FirstStage ~ must passcale along:

FFT_FirstStage with Scaling for Reverse Transform

static void FFT_FirstStage(
int m, /l'log2 of butterfly radix.
ComplexArray vOut, /I Address of output vector.
ComplexArray vin, /I Address of input vector.
int cO, /I Coefficient for cO.
float scale, /I Scale for reverse transform.
const CommonWeight weights] /I Array of weight values.

2.1, August 8, 2004 79




Construction of a High-Performance FFT

/I Coefficient for k1 is coefficient for cO divided by 1<<m.
constintcl =c0 >>m;
const int ul = 1<<m;

/I Cluster size is how many sets fit in buffer at o ne time.
const int cluster = b >> m;

int n, nLower, kO, k2;

/I Process values of k2 in clusters.
for (k2 = 0; k2 < c1; k2 += cluster)

{
Gather(buffer, vin, ul, cl1, k2, cluster);

if (m& 1)

FFT8_0WeightsScale(buffer, buffer, b, scale);
else

FFT4_O0WeightsScale(buffer, buffer, b, scale);

nLower =mé&l1 ? 3 : 2;
for (n=nLower;n <m n+=2
FFT4_0Weights(buffer, buffer, b>>n);

for(k0=1 ;nLower<m ; nLower += 2)

for ( ; kO < l1<<nLower; ++k0 )

for (n=nLower;n <m in+=2 )
FFT4_1WeightPerCall(buffer, kO, b>>n, weights[kO0]);

Scatter(vOut, buffer, ul, c1, k2, cluster);

}

8.4 Alternatives

80

Butterfly routines other tharFT4_0weights or FFT8_OWeights could be chosen for per-
forming the scaling multiplications. A significant disadvantagasihg any other routine
is that all other routines include multiplications by weights asghot incorporate the
scaling multiplications without extra computations unless the seateorporated into
the weights. This would require separate tables of weighthiéoforwardDFT and the
reverseDFT. If that is acceptable, the®T4_Final may be another good candidate for
the scaling multiplications because:

= |tis used in only one pass (and we do not want to scale the data more than once).
= |t uses separate weights (so only the final weights have to beeddablthe forward
and everseDFT, not the common weights).
» |ts implementation might have some compute time available for additionaphcak
tions, since the routine is burdened with loads, stores, and permutations of elements.

When performing the DFT with the-tache kernel, the data of the vector being trans-

formed is loaded only in the butterfly routines. Adding more loadketiata would hurt
performance, so the scaling for the revedd$& must be incorporated into one of the but-
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terfly routines. In the multipkstage kernel, the data is also loaded indhter and
Scatter  routines. Since these routines are memory copy operations aindeace com-
putations, they may be able to do the scaling multiplications it dr no extra time
consumed. This possibility is not examined further in this paper.

9 Executing the FFT

All the parts that will execute the FFT have been designed. Weweed to call those
parts, to design one central routine that will execute the d#fife This requires obtain-
ing the constants that the FFT will use, choosing the sstglge incacherFFT_Kernel or
the outof-cacheFFT_MultipleStages ~ , and executing the chosen routine.

9.1 Constants
To manage the constants, we use a structure that holds pointéachtof the types we

need:
ConstantsSet
typedef struct {
const CommonWeight *commonWeights;
const FinalWeights *finalWeights;
const Finallndices *finallndices;

} ConstantsSet;

Before callingrrT_Kernel or FFT_MultipleStages ~ , the FFT needs to get the constants.
We will use a routine namegktConstants  to manage the tables. This routine will:

» Allocate space for and generate any tables of constants needed.

» Keep tables for future use.

* Return existing tables when available rather than generating them again.

» Keep one table of common weights for all lengths up to the longgséested
length.

» Keep one table of indices and one table of final weights for each requested length.

For the common weights, a pointer to the existing table is kepénimonweights, and
the longest vector length supported by that table is kepbritmonLength. Given a re-
guested to provide a table for a vector of lengibth , we compare it t€ommonLength

to see if the existing table is long enough. If it is not, we géaex new table. Then the
table is returned in the structure of table pointers (or 1 is returned to indicateran err

if (CommonLength < length)

if (GenerateCommonWeights(&CommonWeights, &CommonLe ngth,
length) !=0)
return 1;

set - >commonWeights = CommonWeights;

For final pass indices, a separate table is needed for each sdpmuter length. So an
array of pointers is kept iFnalindices , and a method is needed to select an element in
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the table based on the vector length. The precise method is unimparndrthis state-
ment suffices to provide an element index given a vector length:

| const int hash = ilog2(length); |

Having selected an element in the array, we check it tof $kere is already a table of
indices for this vector length. If there is not, we generate dmen The pointer to the ta-
ble is returned in the structure pointers:

if (Finallndices[hash] == NULL)
if (GenerateFinallndices(&Finallndices[hash], lengt h) 1= 0)
return 1;
set - >finalindices = Finallndices[hash];

The preparation of the table of finahss weights is similar. The complete routine is
shown belowd is passed as a parameter but not used. This allows for thbijtys$iat
scaling for the revers®FT could be incorporated into the tables of weights in a modified
design, andetConstants  would need to return different tables for different values. of

GetConstants
static int GetConstants(
ConstantsSet *set, /I Structure in which to return pointers.
int length, /I Length of vector to be transformed.
intd /I Direction of transform.
)
{
static CommonWeight *CommonWeights = NULL;
static int CommonLength = 0;
static FinalWeights *FinalWeights[32] = { NULL };
static Finallndices *Finallndices[32] = { NULL };

const int hash = ilog2(length);

if (CommonLength < length)

if (GenerateCommonWeights(&CommonWeights, &CommonLe ngth,
length) !=0)
return 1;

set - >commonWeights = CommonWeights;

if (Finallndices[hash] == NULL)
if (GenerateFinallndices(&Finallndices[hash], lengt h) 1= 0)
return 1;
set - >finalindices = Finallndices[hash];

if (FinalWeights[hash] == NULL)

if (GenerateFinalWeights(&FinalWeights[hash], lengt h,
Finallndices[hash]) != 0)
return 1;

set - >finalWeights = FinalWeights[hash];

return O;
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9.2 FFT Routine
Finally we can write our main FFT routine:

FFT
int FFT(
float *re, /I Address of real components.
float *im, /I Address of imaginary components.
int N, /[ Base - two logarithm of length of vector.
intd /I Direction of transform.
)
{

ConstantsSet constants;
ComplexArray v(re, im);

/* To perform a transform in the reverse direction, first
swap the real and imaginary components. Scaling wi Il be
done later.

*/

if (d<0)

v = ComplexArray(im, re);

/I This FFT does not support N < 4.

if (N <4)
return 1;

/* This FFT does not support long vectors that over flow the
field size in the indices.

*/

if (CHAR_BIT * sizeof constants.finallndices ->read + 4 <N)

return 1;

/ | Get the constants.
if (0 = GetConstants(&constants, 1<<N, d))
return 1;

/I If nis small, do the single - stage FFT.
if (1<<N < 32768 / (sizeof *re + sizeof *im))

FFT_Kernel(v, v, N, d, constants.commonWeights,

constants.finallndices, constants.finalWeights);

/l'If nis large, do the multiple - stage FFT.
else
FFT_MultipleStages(v, v, N, d, constants.commonWeig hts,
constants.finallndices, constants.finalWeights);

return O;

A Generating Radix-8 Butterfly with Maple

The fdlowing Maple (version 7.00) code generates the assignment statements used in the
weightless radi8 butterfly (section 4.3.3), except that the useiof, t5i , t7r , andt7i
was added manually to eliminate common subesspyas.
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one(x) is a convenient notation fof & *.
> one = X -> exp(2*Pi*I*x):

r(n) gives the number obtained by writingn binary and rotating its bits around the bi-
nary point.
> := proc(n) option remember;

if n=0 then O else (irem(n,2)+r(iquo(n,2)))/2 fi end:

vp(N, n, m, k) gives thek" element of/m as an expression of elementwjn
E.g., for a 102&lement FFTy(10, 3, 0, 4) gives element four of the third pass in
terms of original (pass zero) input elements, &@nd, 2, 1, 4) gives element four of
the third pass (2+1) in terms of elements in pass 2.
>vp = proc(N, n, m, k)

local kO, k1, k2, j1;

Separaté into bit fields of lengtim, m, andN-n-m.
kO :=iquo(k, 2*(N-n));
k1 :=iquo(irem(k, 2*(N-n)), 2*(N-n-m));
k2 := irem(k, 2*(N-n-m));
Write Vhemk @S @ sum of elementsvp.
v[n+m, K] = sum(
one(j1*r(k1)) * one(r(2*m+*k0)) ~ j1
*v[n, 22 (N-n)*k0 + 2*(N-n-m)*j1 + k2],
j1=0 .. 2"m-1);
end:

ExpandParts converts each reference to an elemegntinto real and imaginary parts
with new names. The name takes the fel#ner><number><part> , Where:
<letter> is derived frorm: O becomes, 1 becomes, etc.
<number> is the value ok.
<part> is “r” or “i ” for real or imaginary.
For exampley[2, 4] is converted t®4r + 1*b4i
> ExpandParts := proc(e)
Apply the procedure-> ... to each occurrence @finteger, anything] in the expres-
sione.
subsindets(e, v[integer, anything],
x-> ... appliesy-> ... to ther and thei in r+*7
X -> subsindets('r’ +I*'i°, symbol,
y-> ... concatenates a null string (to ensure string type), a letter derivedHhedimst sub-
script ofx, the value of the second subscripkpéind the name i (which isr  or
| .
: y -> cat(", StringTools[Char](97+op(1, X)),
op(2, x), y)

)
);

end:
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ExpandPartsCompound separates, expands, and simplifies the real and imaginaryoparts
a list of equations.
ExpandParts is applied to the list, and then each object in the list is reglasth two
objects, one for its real components and one for its imaginary components.
Since each object in the list is expected to be an equatiorReaguadim cannot be ap-
plied to equationsyap is used to applre andim to the parts of the object.
> ExpandPartsCompound := proc(l)
Third, simplify the expression to get the separate components.
evalc(map(
Second, request the real and imaginary components.
t -> (map(Re, t), map(Im, t)),
First, expand and rename the real and imaginary parts.
ExpandParts(l)
)):

end:

Usevp to express each elemenof each radix2 pass of a Z-element FFT in terms of
elements of the previous pass.
> 10 := subs(N=3, '[seq(seq(vp(N, n-1, 1, k), k=0..2"N-1),

n=1..N)]"):

Print each equation “linearly,” suitable for cutting and pasting.

> map(lprint, ExpandPartsCompound(t0)):
bOr = aOr+a4r

bOi = ali+adi
blr = alr+abr
bli = ali+abi
b2r = a2r+abr
b2i = a2i+abi
b3r = a3r+a’r
b3i = a3i+a7i

b4r=alr - adr
b4i = a0i - adi
b5r=alr -abr
b5i=ali - abi
b6r=a2r -abr
b6i = a2i - abi
b7r=a3r -ar7r
b7i=a3i -avi
cOr = bOr+b2r

c0i = bOi+b2i
clr =blr+b3r
cli = bli+b3i
c2r=b0r -b2r
c2i=b0i -Db2i
c3r=blr -b3r
c3i=bli -b3i
c4r=bdr -Db6i
c4i = b4i+b6r
c5r=Db5r - Db7i
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c5i = b5i+b7r

c6r = b4r+b6i

c6i = b4i - bor

c7r = b5r+b7i

c7i=b5 -b7r

dOr = cOr+c1r

dOi = cOi+c1i

dir=cOr -clr

dli = cOi - cli

d2r=c2r -c3i

d2i = c2i+c3r

d3r = c2r+c3i

d3i = c2i - C3r

d4r = c4r+1/2*2"(1/2)*c5r - 1/2*27(1/2)*c5i
d4i = c4i+1/2*27(1/2)*c5i+1/2*27(1/2)*c5r
d5r=c4r - 1/2*27(1/2)*c5r+1/2*2°(1/2)*c5i
d5i=c4i - 1/2*27(1/2)*c5i - 1/2*27(1/2)*c5r
dér =c6r - 1/2*2"N1/2)*c7r - 1/2*2N(1/2)*c7i
d6i=c6i - 1/2*27N(1/2)*c7i+1/2*2~(1/2)*cTr

d7r = c6r+1/2*27N(1/2)*cTr+1/2*27(1/2)*C7i

d7i = c6i+1/2*27(1/2)*CTi - 1/2*27N(1/2)*CTr

B Notes About C Source Code

B.1 Indentation

Because there is a limited width available to display codeisrpaper, | contract some of
normal indenting when showing loops or conditional statements. For exarogke that
is more usually written:

for (kO = 10; kO < u0; ++k0)
for (k1 =11; k1 < ul; ++k1)
for (k2 = 12; k2 < u2; ++k2)
function(kO, k1, k2);

may instead be written:

for (kO = 10; kO < u0; ++k0)

for (k1 =11; k1 < ul; ++k1)

for (k2 = 12; k2 < u2; ++k2)
function(kO, k1, k2);

| hope the reader will not find this confusing. The latter sebabps$ might be thought of
as one thredimensional loop instead of three edienensional loops.

B.2 Complex Number Representation

86

The code displays use a typanplex that is not defined in this paper but implements
normal complex arithmetic.

C++ implementations ofomplex and ComplexArray are given in the demonstration
code that supplements this paper. These implementations provide convdesnoes
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that make the demonstration code appear simple but would be atrocious to implement in a

real application. Those features solely illustrate the desighicydarly the intermediate

stages of development. None of them are needed in a final implementation.

B.3 Memory Allocation and Alignment

The routines for generating weights are shown usiaigpc

to allocate memory. In an

AltiVec implementation, these arrays should be aligned to multgfld$ bytes, and so

an allocation routine that guarantees this should be used, suchves thalloc  de-
scribed in Motorola’#ltiVec: The Programming Interface Manual
B.4 Bit -Reversed Bytes
This code generates the table ofreNersed bytes in routine in section 5.2
Generate BitReversed Bytes for rw
#include <stdio.h>
static int rw(int i) {
intr, t;
for (r=t=0; t < 8; ++t, i>>=1)
r=r<<1|i&l;
returnr;
}
int main(void) {
inti;
for (i = 0; i < 256; ++i)
printf("%3d,%c", rw(i), i % 16 == 15 ?" \n' "'
return O;
}
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